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STATE-SPACE REPRESENTATION OF FLAPPING WINGS IN HOVER  

 

ABSTRACT 

The state-space representation of unsteady wing aerodynamics is developed and implemented for the 
lift generation at high frequency flapping to hover. This way very fast solution for the response of the 
lifting surface is determined via solution of a first order ordinary differential equation which governs the 
time dependent behavior of the state variable. The state variable, in general, is identified as the 
characteristic flow parameter suitable for representing the unsteadiness of the flow; such as the 
separation point movement for an airfoil or vortex breakdown location on a delta wing at high angles of 
attack. For more complex flows, however, the value of the Duhamel integral of the arbitrary unsteady 
motion becomes an intelligent choice as the state variable. The quasi steady circulation with the 
leading edge vortex at high AoA is employed as the loading to the Duhamel integral together with the 
Wagner function to determine the timewise unsteady lift change. Since the frequencies considered are 
quite high, the contribution of the apparent mass term to the unsteady lift is also considered. The 
formulation developed here is succesfully implemented for evaluating the unsteady lift generated by 
the fruit fly in hover.   

     

INTRODUCTION 

The studies of flapping wing aerodynamics have become quite popular since it provides quiet and 
efficient performance of MAV’s, as opposed to the engine powered fixed wings, for the applications. 
For practical applications the prediction of unsteady aerodynamic forces and moments, the 
experimental and the numerical methods reqiure vast amount of wind tunnel hours as well as huge 
computational efforts even with todays High Performence Computers. On the other hand, for the real 
time applications fast predictions are necessary for flight dynamics and control purposes. The state-
space representation of unsteady aerodynamic applications provides fast results for the determination 
of the lift with wing flapping. The state variable is identified either formally or it is based on a well 
defined physical meaning [Goman and Khrabrov, 1994],  [Gulcat, 2011 and 2016] and most recently 
[Uhlig and Selig, 2017], and its time dependence is calculated with numerical solution of a first order 
differential equation. It is also applied for morphing wings of finite span [Reich et.al., 2011] and 
[Izraelevitz et.al., 2017]. For the formal way; the Wagner function which gives the response of the 
lifting surface to the unit excitation is employed either with Duhemal integral [Taha et.al, 2014] or with 
Laplace transform of the function [Leishman, 2000]. The Wagner function in terms of the reduced time 
is given in [Bisblinghoff, et.al, 1995] for airfoils and for the finite wings of different aspect ratios. For the 
latter, the location of the separation point of an airfoil is chosen as the state varible for 2-D cases and 
the vortex burst point is considered for delta wings. In both cases, relaxation time parameters and the 
static aerodynamic behavior of the lifting surfaces must be known.  
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Here, the Wagner function approach is chosen to cover the wide range of angle of attacks to represent 
the backward and forward motion of the wing in hover. The time relaxation is automatically handled 
within the Wagner function which behaves as the kernel of the Duhamel integral, wherein the reduced 
time is no longer based on a constant free stream. Therefore, the exponents  of the Wagner function 
must be modified using the time integration of the harmonically varying freestream.  

As the application of the developed method, the lift generated by flapping of fruit fly wings, in hover, is 
determined. The static lift dependence on AoA of the fruit fly given in [Berman and Wang, 2007] and 
[Taha et.al, 2014]  is utilized for determining the contribution of the quasi steady circulation as well as 
its contribution to the Duhemal Integral.  

METHOD 
The lift generated with flapping wing is formulated with the state-space concept based on the Wagner 
function which gives the response of the lifting surface to an arbitrary motion as  
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The quasi steady circulation created by the strip is then given with    
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Here, Cls is the lift coefficient given for even at large angles of attack which permits the occurence of 
leading edge vortex.  
 
 The circulatory lift of the strip now becomes     

                              






 
 

t

qsqscc d
d

td
ttUtUtl

0

)(
)()0()()()()( 




                                                   (4) 

For varying free stream the dervative of the Wagner function reads as 
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With the above’s equation, (5), the unsteady circulation becomes 
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The derivative of this equatiıon, with respect to time t, applying the Leibnitz rule, gives 
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Here, xi=xi(t) is identified as the state-space variable for determining the unsteady lift generated by the 
flapping wing via solving (7), which is an ODE with xi(0)=0. The circulatory lift then reads, 
 

                               )()()()1()()( 2121 txtxtaaUtl qsc                                                     (8) 

 
The non-circulatory lift, on the other hand, is calculated as the apparent mass term as folllows: 
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Where, )(taz is the vertical acceleration and )(t  is pitching angle. The acceleration , here, has two 

components: i) Acceleration due to freestream speed change only i.e.  sinr  , and ii) acceleration 

due to angle of attack change, i.e.  cosr . Hence, the acceleration for the apparent mass term 

becomes )cossin(   rraz  . The sectional lift coefficient, with (8) and (9), is defined as 

follows 
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Here, 
mU  is the maximum free stream velocity at the midspan and bm is the half chord at the 

midspan. 

Applications 

The method developed here is applied to the fruit flies hover calculations. The data for the fruit fly wing 
flapping is given in [Taha et.al, 2014]. The span of the wing is 2.02 mm, the aspect ratio is 3, half 

chord is 0.34mm and the static lift coefficient is .2sin833.1 lC The Wagner function is given by 

[Bisblinghoff, et.al, 1995]. The preliminary calculations are performed for the half span of the wing 
whose pitching motion for one period of forward and backward sweeps as shown in Figure 1.   
 

 
                  Figure 1.   Angle of attack change, 90o-40o-90o during forward and backward sweeps. 
 
Shown in Figure2 is the simplified top and side wiev of the wing-body combination of the fruit fly.  
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Figure 2.  Top and side views of the body and the wing (in side view only a cross section of the wing is 

shown). 

The sweep variation to  cos75  and the pitch variation, in terms of arctangent and sine 

function,  of the wing are given in Figure 3. The variable free stream at span r reads as 

tr  sin  

 

           Figure 3. Variation of the sweep angle: 
oo 7575   , and the pitch angle  

oo 14040  . 

 
Shown in Figure 4 is the variation of lift and the state variables for period of six of the motion. The 
contribution of the unsteady circulatory term initially is zero, by time it increases and evantualy it 
reaches to its constant averaged value. The time averaged sectional lift coefficient  reads as 
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We can find the average lift force generated by the fruit fly in hover and compare it with weight of it 

given in [Berman and Wang, 2007] as NW 06.7 , wherein the frequency of flapping is 268Hz for 

the optimum solution, hence, the reference speed becomes 

sec/23.22268180/751001.1 3 mxxxxxxrUm    .  

Using (11), the sectional lift force reads as       

                             ./1076.185.01034.023.2225.1 3322 mNxxxxxCbUF Lmms

    

For two wings with span of 2.02mm the total lifting force can be approxmately calculated as 

NxxxxF 11.71002.21076.12 33  
 which is not even 1% higher than the weight of the fruit fly. 
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Figure 4. Total lift coefficient, Cl , and state variables variation, X1+X2, for 6 period. 

 
The time averaged lift coefficient is calculated with (11) using one period as shown in Figure 5, which 
is the full period after the 6th period shown in Figure 4. 

 
   Figure 5. Lift coefficient variation for one period 

 
Here, the sectional lift generated at the midspan of the wing is calculated.  
 
A typical fruit fly wing is given in Figure 6.The shape of the wing is elliptic and the Wagner function for 
the elliptical wings with different aspect ratios are provided in [Bisblinghoff, et.al, 1995]. 

                                      
 

Figure 6. Wing shape of a typical fruit fly.(Dimensions: body to root: 0.20mm, span: 2.02mm, 
midchord: 0.86mm, S=1.36mm2) 

( www.google.com.tr/search?q=shape+of+the+fruit+fly+wing) 
 
Finite wing: The Wagner function for the elliptical wings are given in [Bisplinghoff, et al, 1996] as 

follows 
so

W es 54.17.06.0)(  . The spanwise integration of the sectional lift given in (8 ) and (9) 

with respect to r, from root to tip results in for the total wing  
 

 

 



 
AIAC-2017-060                                                                                Gulcat 

6 
Ankara International Aerospace Conference 

 

   drttabtxtxtUdrtltl

Rr

r

zqs

Rr

r

ncc 



1

1

1

1

)(cos)()()()()17.06.0()())()(( 2

21      (12) 

The integrand of (12) can be separated into 3 different components after letting rU  )(  as 

follows: i) two circulatory terms as pitch and the pitch rate, and ii) a non circulatory term. Hence, 
contributions of each term to the integral results in  
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Here, randb  the reference half chord and span values.  The numerical values pertinent to the wing 

of a fruit fly pictured in Figure 6 is given in Appendix. Using the values for I1 , I2 and b the wing’s total 

lift coefficient reads as  
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The plot of total lift coefficient together with the 2-D case is shown in Figure 7.   
            

 
Figure 7. Variation of the total lift coefficient of the wing for one period 

 
The averaged lift coeffcient for the wing using (13) reads as  
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The averged lift force, for both wings considered, then reads as  
 

                                          NSUCF mL  11.72/2 2  , 

 
with wing flapping frequency f=240 Hz it is possible to attain hover for the fruit fly.  
 

CONCLUSIONS 
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State-space representation for unsteady aerodynamic computations is developed and implemented for 
fruit fly hover.  
First, 2-D approach is considered for a rectangular wing for the sake of simplicity in testing the 
approach. A bit high frequency of flapping needed to maintain the weight of the fruit fly in balence with 
the lifting force. 
Finally, the elliptical wing shape of the fruit fly is considered with a hub length (distance from the body 
to the root of the wing). This way, the frequency of the flapping is reduced ten percent in order to 
maintain hover. 
 

Appendix 
The properties of the eliptical wing shape of the fruit fly is given in Figure A. Accordingly, the first and 
the second moment of inertia for the wing read as  
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Figure A. Pertinent dimensions, in mm, of the elliptical wing of a fruit fly.  
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