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ABSTRACT

We have developed a lattice Boltzmann method solver that is able to model conjugated heat trans-
fer problems for fluid and solid in contact. The solver uses a Cartesian mesh that consists of
D2Q9 lattices. Transient heat transfer in solid and fluid regions are solved simultaneously without
specific treatment on the interface. In order to accelerate the solver we use Compute Unified Device
Architecture (CUDA) for coding. We developed another conjugate heat transfer solver that is based
on finite volume method by modifying two existing open source CFD program, openFoam. The
solver satisfies energy balance and no jump in temperature on the interface with inner iterations.
This study compares the two solvers by modeling a benchmark problem, backward facing step duct
flow over a thick wall.

INTRODUCTION

Lattice Boltzmann Method (LBM) was �rst introduced in 1988 by McNamara and Zanetti as a novel
approach for the solution of 
uid 
ow problems [McNamara and Zanetti 1988]. Apart from the
conventional CFD solvers, the lattice Boltzmann method is based on gas-kinetic theory. The discrete
Boltzmann equation is solved on a Cartesian mesh, where each lattice is linked to the neighboring
lattices by streaming directions. The most preferred lattice model is D2Q9 for 2-D, in which each
lattice has 9 streaming directions. Particle collision is modeled as a linearized Bhatnagar-Gross-Krook
(BGK) expansion, which is responsible for the local change of the microscopic quantities (particle
distribution function). From the hydrodynamic moments of the particle distributions, macroscopic
quantities (velocity, pressure, and temperature) are obtained [Perumal and Dass 2015]. Nowadays,
there are energy distribution functions based on either temperature or internal energy [Chen, Shu,
and Tan 2017; D'Orazio et al. 2015; Karimipour et al. 2012; Monfared et al. 2015], while the model
for velocity distribution function is unique [Mohamad 2011; Seddiq, Maerefat, and Mirzaei 2014; Zhao
and Yong 2017]. Both distribution functions are extendable to the desired order of accuracy.

A great number of boundary conditions are available today for lattice Boltzmann method solvers [Con-
trino et al. 2014; Jahanshaloo et al. 2016; Li, Mei, and Klausner 2013; Rahmati, Ashra�zaadeh, and
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Table 1: Nomenclature
Symbol Description Symbol Description

Roman Greek
b Wall thickness α Thermal diffusivity
~c Lattice velocity Θ Dissipation function
cs LBM speed of sound λ Second coefficient of viscosity
Cv Specific heat at constant volume µ Dynamic viscosity
e Internal energy ν Kinematic viscosity
E Total energy ρ Density
f Momentum distribution function τ Shear stress

f̃ Post-collision f ω Collision frequency
~F Vector of fluxes for FVM Ω Control volume
g Temperature distribution function ∂Ω Surface of the control volume
g̃ Post-collision g
h Entrance height Superscript
H Channel height eq Equilibrium value
j General index n Quantity value at time n
k Thermal conductivity
kr Solid to fluid conductivity ratio Subscript
L Characteristic length c Conservative quantity
~n Normal vector of the surface f Relative to fluid region
Nu Nusselt number i Along ith direction
p Pressure m Related to momentum equation
Pr Prandtl number max Maximum value
q Heat flux min Minimum value
~Q Vector of conserved variables s Relative to solid region
~r Position vector v Viscous quantity
R Gas constant x Along x direction
Re Reynolds number y Along y direction
S Edge length for a quad element
T Temperature Mathematical Signs
t Time ∆ Increment

u Horizontal component of ~V ∇ Gradient

v Vertical component of ~V
~V Velocity vector
w Specific weight for lattice
x x-axis
y y-axis

Shirani 2014]. More information on boundary conditions can be found in several review articles, such
as [Jahanshaloo et al. 2016].

Conjugate heat transfer (CHT) problems require solution of energy equation at once, in the regions
that are in contact. Here the regions in contact are 
uid and solid. The temperature distribution in

uid, results from both convection and conduction. On the other hand, only conduction is considered
in the solid. Therefore, a proper solution for a CHT problem gives contact surface temperature
accurately. Most importantly, at the contact surface, the temperature and energy 
ux shouldn't have
any jump [Ram�sak 2015].

Lattice Boltzmann method has great a potential to accelerate on Graphics Processing Unit (GPU).
We tested our solver performance on GPU by modeling several 
uid 
ow problems [Spinelli and Celik
2015, 2017; Spinelli, Luca, and Celik 2015].

The main objective of this study is to compare the results obtained from CHT LBM solver with those
obtained from conventional CFD solvers [Celik 2017].
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NUMERICAL METHODS

lattice Boltzmann method

The aforementioned Bhatnagar-Gross- Krook linearized expansion model [Mohamad 2011], simpli�es
the complicated right hand side of the original Boltzmann equation as below:

∂fi
∂t

+ ~ci · ~∇fi = ω(f eqi − fi) (1)

Collision, streaming, boundary condition updating, and calculation of macroscopic quantities are the
four main steps of LBM;

The D2Q9model is shown in Fig. 1.

Figure 1: The D2Q9 lattice model

Tab. 2 shows weighting factors and local velocities for each streaming direction, for D2Q9model.

Table 2: Weighting factors and local velocity vectors for D2Q9 model

i 0 1 2 3 4 5 6 7 8
wi 4/9 1/9 1/9 1/9 1/9 1/36 1/36 1/36 1/36
~ci (0, 0) (1, 0) (0, 1) (−1, 0) (0,−1) (1, 1) (−1, 1) (−1,−1) (1,−1)

Discretizing Eq.1 in time and space we obtain

fi(~r + ~ci∆t, t+ ∆t) = fi(~r, t) + ωm [f eqi (~r, t)− fi(~r, t)] (2)

Streaming and collision stages can be written explicitly as follows:

f̃i(~r, t) = fi(~r, t) + ωm [f eqi (~r, t)− fi(~r, t)] (3)

fi(~r + ~ci∆t, t+ ∆t) = f̃i(~r, t) (4)

Coding collision and streaming stages on GPU are shown with two examples in List.'s 1 & 2, respec-
tively.

Listing 1: A sample code for collision stage on GPU

__global__ void Collision_GPU(type *g, type *T, type *w, type *u, type *

v, type *cx, type *cy, type omega , int Lx, int Ly, int Lz, type cs,

type dt)

{

int j = blockIdx.y * blockDim.y + threadIdx.y;

int i = blockIdx.x * blockDim.x + threadIdx.x;
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if ((i < Lx) && (j < Ly))

{

for (int k = 0; k < Lz; k++)

{

float geq = T[j * Lx + i] * w[k] * (1. + 1./(cs*cs) * (u[j * Lx +

i] * cx[k] + v[j * Lx + i] * cy[k]));

g[k * Lx * Ly + j * Lx + i] = (1. - omega) * g[k * Lx * Ly + j *

Lx + i] + omega * geq;

}

}

}

Listing 2: A sample code for streaming in directions 1 and 3 on GPU

__global__ void streaming_GPU(float *f, int Lx, int Ly)

{

int j = blockIdx.y * blockDim.y + threadIdx.y;

int i = blockIdx.x * blockDim.x + threadIdx.x;

//adjust indeces

int j_adj = (Ly - 1) - j;

int i_adj = (Lx - 1) - i;

if ((i < Lx - 1) && (j < Ly))

{

// right to left

f[1 * Lx * Ly + j_adj * Lx + i_adj] = f[1 * Lx * Ly + j_adj * Lx + (

i_adj - 1)];

// left to right

f[3 * Lx * Ly + j * Lx + i] = f[3 * Lx * Ly + j * Lx + (i + 1)];

}

}

Then, macroscopic quantities are calculated as follows:

ρ =
9∑

i=1

fi (5)

~V =
9∑

i=1

fi~ci (6)

A second order accurate velocity model used in the computation is written below:

f eqi = wiρ

[
1 +

~ci · ~V
c2s

+ 0.5
(~ci · ~V )2

c4s
− 0.5

~V · ~V
c2s

]
(7)

The kinematic viscosity ν of the 
ow is related to the collision frequency ωm as follow:

ν =
∆x2

3∆t
(ωm − 0.5) (8)

Although the streaming and collision stages of temperature calculation in CHT are almost identical
to those for only 
uid solver, a few discrepancies in the procedure are listed below.

• additional distribution function, g is introduced for T ;
• the macroscopic quantity is T instead of ρ;
• now collision frequency ω it is related to the thermal di�usivity α.
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In order to give a better insight a 
ow chart of the solver is given in Fig. 4, in Appendix.

Finite volume solver

Governing equations for an incompressible, laminar 
ow of Newtonian 
uid are as follows.

~∇ · ~V = 0 (9)

∂~V

∂t
+ ~V · ~∇~V =

1

ρ
∇p+ ν∇2~V (10)

∂Tf
∂t

+ ~V · ~∇Tf = α∇2Tf (11)

Just Eq. 11 needs to e solved for solid region, where ~V = ~0.

Two separate solvers of openFoam [Craven and Campbell n.d.; OpenFOAM The Open Source CFD
Toolbox - Programmer’s Guide n.d.], for 
uid and solid regions, are combined to generate Finite
Volume Method (FVM) based solver. icoFoam is the transient incompressible solver selected for the

uid region, at which the energy equation is added. laplacianFoam solver is modi�ed for solving the
conduction equation in solid region. For details see the article [Celik 2017].

RESULTS AND DISCUSSION

We already tested the accuracy of the LBM solver by modeling benchmark problems for 
uid 
ow [Spinelli
and Celik 2015, 2017]. In order to see the solver performance on pure conduction, we modeled the
problem of conduction on a rectangular plate and compared the result with the analytical solution.

In order to check the accuracy of the solver, two CHT problems are modeled. The accuracy of the LBM
solver is tested by modeling two separate problems; a solid plate with walls at constant temperature
and a backward facing step duct that has a solid wall with thickness.

Test case #1

The geometry is a simple rectangular plate, with a length of Lx and Ly in x and y directions. The
plate boundaries are at 0 temperature, except the one on the top at T = 1. The comparison is made
by using the analytical solution [Cengel et al. 2003].

Comparison of the obtained temperature distribution along the centerline with analytical solution
shows that maximum deviation is less than 0.14%.

Figure 2: Initial and boundary conditions of Test Case #2
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Test case #2

The second problem simulated here is the conjugate heat transfer through a backward facing step
duct [Kanna and Das 2006]. A 
uid at 0 temperature enters the channel from the left, where the
channel is suddenly expanding. As can be seen from Fig. 2, the bottom wall of the channel has a
thickness of two times the channel height. It is assumed that the 
ow entering the channel is fully
developed. The solid to 
uid conductivity ratio is equal to 10. Except the bottom wall and inlet, all
walls are adiabatic. The bottom wall is at T = 1.

Accurate determination of interface temperature requires solution of both 
uid 
ow and combined
energy equation in two regions. Interface Nusselt number distribution for Re = 800 and solid to 
uid
kr ratio of 10 are shown in Fig. 3, Alongside the results available in literature [Ram�sak 2015] and the
one obtained from FVM solver [Celik 2017]. At the entrance region, the LBM solution is more smooth
than FVM solution, the latter presents a sudden drop for interface Nusselt number distribution right
after entrance station.
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Figure 3: Nusselt number comparison for test case #2, where Re = 800,Pr = 0.71, kr = 10

Along with the qualitative comparison in Fig. 3, numerical data are listed in Tab. 3. Despite small
oscillatory behavior, the maximum descrepancy between LBM and [Ram�sak 2015] is less than 1.41%.
On the other hand, the maximum descrepancy between FVM and [Ram�sak 2015] is less than 0.37%,
if we neglect the entrance region where the error is about 10.95%.

Table 3: Accuracy comparison between LBM and FVM with respect to reference [Ramšak 2015]

Re = 800,Pr = 0.71, kr = 10

Test Case Tmin Tmax Tavg Numin Numax Nuavg

LBM 0.4565 0.8063 0.6362 0.3954 3.0174 1.7752
FVM 0.4592 0.8141 0.6408 0.4477 3.0540 1.7848

Ramsak 0.4640 0.8090 0.6412 0.3987 3.0600 1.7914
% Error LBM-Ramsak 1.6429 0.3349 0.7859 0.8346 1.4118 0.9143
% Error FVM-Ramsak 1.0453 0.6265 0.0624 10.9448 0.1965 0.3698

Furthermore, a comparison between LBM and FVM results is given both in terms of minimum,
maximum, and average values of temperature and Nusselt number variation along the interface, in
Tab. 4 and Tab. 5 respectively, for di�erent Reynolds numbers, Prandtl numbers and solid-to-
uid
thermal conductivity ratios.

For temperature evaluation the maximum deviation observed between LBM and FVM is 2.66%, which
occurs for extremum comparisons. If we consider average temperature value at the interface the
maximum di�erence is about 1.43% for cases where Re = 200, while it is below 0.53% for Re = 400
and 0.72% for Re = 800.
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For Nusselt number the behavior is slightly di�erent. The maximum di�erence for extremum is 13.23%.
As for temperature case, maximum deviation is 2.24% for average Nusselt number along the interface
for Re = 200, while it is less than 0.54% for the other cases.

Table 4: Comparison between LBM and FVM for interface temperature evaluation

Test Case LBM % Error LBM-FVM

Re Pr kr Tmin Tmax Tavg Tmin Tmax Tavg

200 0.10 10 0.7649 0.9963 0.9284 0.7713 0.1405 0.2703
200 0.71 10 0.6071 0.8255 0.7438 1.2189 1.2598 1.3310
200 0.71 50 0.8687 0.9579 0.9279 2.2562 0.8560 1.4226
200 0.71 100 0.9171 0.9753 0.9567 2.6606 0.9330 1.4320
200 10 10 0.3796 0.5862 0.5114 0.5269 2.0641 1.3688
400 0.10 10 0.7362 0.9679 0.8744 0.3939 0.2376 0.2287
400 0.71 10 0.5597 0.7871 0.6914 0.6968 0.4320 0.5351
800 0.71 10 0.4565 0.8063 0.6362 0.5915 0.9674 0.7230

Table 5: Comparison between LBM and FVM for interface Nusselt number evaluation

Test Case LBM % Error LBM-FVM

Re Pr kr Numin Numax Nuavg Numin Numax Nuavg

200 0.71 10 0.5797 2.1232 1.2325 9.2117 2.3832 0.0649
200 10 10 0.7281 3.2596 2.3448 12.9790 2.7549 2.2365
400 0.71 10 0.4562 2.3904 1.5084 11.2889 0.9329 0.2824
800 0.71 10 0.3954 3.0174 1.7752 13.2271 1.2130 0.5425

CONCLUSION

This paper provides and compares two solvers for Conjugate Heat Transfer problem: lattice Boltzmann
method and �nite volume method. The LBM solver that uses Single Relaxation Time model has
instability for Reynolds number greater than 2000. Our �ndings are summarized below:

• The FVM solver is more stable than LBM solver for higher Reynolds numbers.
• The FVM code has less deviation from [Ram�sak 2015] results than LBM code, when comparing
average values.
• In general the two solvers give qualitatively similar results.
• The maximum deviation between the two interface average temperature values is about 0.72%
for Re = 800, 0.53% for Re = 400, and is 1.43% for Re = 200.
• The maximum di�erence between the two interface extremum temperature values is about

0.97% for Re = 800, 0.70% for Re = 400, and is 2.66% for Re = 200.
• The maximum deviation between the two interface average Nusselt values is about 0.54% for

Re = 800, 0.28% for Re = 400, and is 0.065% for Re = 200.
• The maximum di�erence between the two interface minimum Nusselt values is about 13.23%
for Re = 800, 11.29% for Re = 400, and is 12.98% for Re = 200. The deviation between
the two interface maximum Nusselt values re
ect the same trend of deviation between the two
interface average Nusselt values.
• The smallest di�erence is observed always for low Prandtl numbers, about 0.10.

ACKNOWLEDGEMENTS

Gregorio Gerardo Spinelli would like to thank TUBITAK for Graduate Scholarship Programme for
International Students (Code 2215). This study is supported by Istanbul Technical University (BAP
project No:36592).

7
Ankara International Aerospace Conference



AIAC-2017-059 Spinelli & Celik

APPENDIX

Start

Read mesh,
Re,Pr, kr and BC’s

Calculate ωm and ωT from Eq.8

Initialize V, ρ, T

Initialize fi = f eqi and gi = geqi

Copy V, ρ, T, t, fi, f
eq
i , gi, g

eq
i , kr

from CPU to GPU and
start excecution on GPU

Time t = t+ ∆t

Compute f̃i from Eq.3

Compute fi from Eq.4

Update fi according to given BCs

Obtain V, ρ from Eq’s.5&6

Compute f eqi from Eq.7

Compute g̃i similar to Eq.3

Compute gi similar to Eq.4
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Figure 4: Flow chart of the developed CHT LBM solver
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