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ABSTRACT 

This work presents the static analysis of moderately thick, arbitrarily laminated composite 
cantilever plate and shells. First order shear deformation theory in association with an 
extension of linear strain-displacement relationships is used to consider the transverse shear 
effect through the thickness direction. Equilibrium equations for laminated composite shells 
are obtained using the virtual work principle. The displacement fields in the governing 
equilibrium equations are expanded with fast converging finite double Chebyshev series.  
Several arbitrarily laminated composite plate and panel problems with cantilever type of 
boundary condition are solved numerically by using Chebyshev Collocation Method (CCM). 
Parametric studies such as effects of lamination stacking, angle of orientation and radius effect 
are investigated and its accuracy is ascertained with a commercial finite element software 
(ANSYS). 
 

INTRODUCTION 
The usage of fiber reinforced laminated composite plates and shells is highly demanded in 
structural applications especially in aerospace areas. Boeing 787 Dreamliner can be given as 
the most recent example produced transport jet, which was manufactured using plastic 
materials reinforced with carbon fiber. Composite materials have attracted significant 
attentions due to their specific properties such as high strength-to-weight and stiffness-to-
weight ratios, corrosion resistance, longer fatigue life, stealth characteristics and most 
importantly tailoring of these structures for desired usage area. The anisotropic behavior and 
bending-stretching coupling of structure may create difficulties for the analyses of composite 
shells. Therefore understanding the behavior of these structures is very important to enable 
safe and economical designs.  

Several books can be found to understand the mechanical behavior of laminated composite 
shell structures. Many researches have been conducted on the static analysis of arbitrarily 
laminated composite shells. A brief summary of the literature including static analysis of 
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arbitrarily laminated composite plate and panels is given in following. [Rango, Belloma and 
Nallim, 2012] surveyed the static analysis of thick, arbitrarily laminated composite plates with 
different materials, boundary conditions, fiber orientation angles and span to thickness ratios 
by using Ritz method. [Nik and Tahani, 2009] examined bending analysis of rectangular 
laminated plates with arbitrary lamination and boundary conditions by employing Extended 
Kantorovich Method. [Vel and Batra, 2004] analyzed rectangular thick arbitrarily laminated 
plates subjected to a sinusoidal load on top surface with different sets of edge boundary 
conditions e.g. two opposite edges simply supported and the other two edge subjected eight 
different conditions or all four edges clamped by using generalized Eshelby-Stroh formalism. 
[Chaudhuri and Abu-Arja, 1989] carried out arbitrarily laminated anisotropic cylindrical shells 
subjected to axially varying internal pressure under the framework of the constant-shear-angle 
theory or the first-order shear-deformation theory (FSDT) with different arbitrary boundary 
conditions.  

Literature review indicated that static analysis of arbitrarily laminated composite plate and 
panels with cantilever type of boundary conditions are limited. Therefore, the primary aim of 
this study is to fill this gap using Chebyshev Collocation Method. Effects of length-to-thickness 
ratio, angle of orientation and radius effect of the static behavior of the panels are investigated. 

 

SOLUTIONS OF EQUATIONS OF MOTION 
Panel (length a, width b) is shown in Fig.1. The points, which have equal distances to the two 
inclined surfaces, are known to be middle surface. x, y and z stated the curvilinear coordinate 
system. 

 

Figure 1: Composite panel 

The displacement field at general point (x, y and z) of the panel based on first order shear 
deformation theory may be written as: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧. 𝜃𝑥(𝑥, 𝑦) 
𝑣(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧. 𝜃𝑦(𝑥, 𝑦) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(1) 

The strain-displacement correlations for moderately thick doubly curved panels using the 
displacement field in Eq. (1) from the theory of elasticity in curvilinear coordinates can be 
written as following [Reddy, 2004]: 
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(2) 



 
AIAC-2017-054                                                 Algül, Kurtaran & Öktem 

3 
 Ankara International Aerospace Conference  

𝛾𝑥𝑧 = 𝜃𝑥 +
𝜕𝑤0

𝜕𝑥
−  

𝑢0

𝑅𝑥
  

Five coupled linear governing differential equations of a moderately thick laminated composite 
doubly curved panel can be written by using virtual work principle as follows: 
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(3) 

Nx, Ny, and Nxy are the in-plane force resultants, Mx, My, and Mxy are the in-plane moment 
resultants and Qyz and Qxz are the transverse shear force resultants.  

(𝑁𝑥 , 𝑁𝑦 , 𝑁𝑥𝑦) = ∑  ∫ (𝜎𝑥 , 𝜎𝑦, 𝜎𝑥𝑦)
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(4) 

The displacements and rotations of middle point and also the loadings are expressed in space 
domain as a summation of double Chebyshev series of the first kind as following [Fox and 
Parker, 1968]: 

u0(𝑥, 𝑦) = ∑ ∑ 𝛿𝑚𝑛 . 𝑢𝑚𝑛. 𝑇𝑚(𝑥). 𝑇𝑛(𝑦)
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(5) 

M and N are the number of Chebyshev series terms and 𝑇𝑚(𝑥), 𝑇𝑚(𝑥) are the Chebyshev 

polynomials. 𝑢𝑚𝑛, 𝑣𝑚𝑛, 𝑤𝑚𝑛,  𝜃𝑥𝑚𝑛
 , 𝜃𝑦𝑚𝑛

 and 𝑞𝑚𝑛 are the unknown coefficients for 

displacements and loading to be determined. 𝛿𝑚𝑛 shows a constant value [Upadhyay, Pandey 
and Shukla, 2011]. 

The governing differential equations in (3) are written in terms of displacement and rotations. 

Equation of motion for doubly curved panel can be shortly written in matrix form as  
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𝐾𝑈 = 𝐹 (6) 

 

where K and F denote stiffness matrix and external force vector,  respectively. 𝑈 denote the 

displacement vectors. To employ the CCM technique, the panel is divided into (M+1)(N+1) grid 

points. The total number of unknown coefficients in terms of unknown displacement values is 

5(M+1)(N+1). The number of equations written for governing equilibrium equations at internal 

grid points is 5(M-1)(N-1). The number of equations written for boundary conditions is 

10(M+1)+10(N-1) equations. It can be seen that the total number of equations is equal to the 

total number of unknown coefficients. Eq. (6) is solved successively to find unknown 

displacement values. 

NUMERICAL EXAMPLES 
Equilibrium equations of composite panels of square plan-form (a = b) were obtained using 
virtual work principle. Plate is a special form of panel with a radius Rx= Ry=∞. Based on the 
theoretical formulation explained in the previous sections, a commercial computer program 
using Matlab is developed to solve these derived equations by using CCM. In the all examples, 
each lamina has same thickness, and total thickness is h=25 mm. Uniformly distributed 
transverse load q0=-1 Pa is applied to the top of the structure. The displacements, w* are 
computed at the middle of the free edge which is parallel to clamped edge and stresses, σx

* 
are computed at the middle of the clamped edge of the panel for all cases. The following 
orthotropic material properties of Boron-Epoxy composite material in the principal material 
coordinate system are assumed: E1=204 GPa, E2=18.5 GPa, G12= G13= G23=5.59 GPa, 
ρ=2100 kg/m3, ν12=0.23. 
The cantilever type (CFFF) of boundary conditions are prescribed at the edges as shown 
below:  
1. Clamped (C): 

x=0,y=0..b   𝑢0 = 𝑣0 = 𝑤0 = 𝜃𝑥 = 𝜃𝑦 = 0    (7a) 

2. Free (F): 

x=0..a and y=0,b   𝑁𝑦 = 𝑁𝑥𝑦 = 𝑄𝑦 = 𝑀𝑦 = 𝑀𝑥𝑦 = 0    

x=a, y=0,b   𝑁𝑥 = 𝑁𝑥𝑦 = 𝑄𝑥 = 𝑀𝑥 = 𝑀𝑥𝑦 = 0     
(7b) 

The following normalized quantities are defined: 

w∗ =
10𝐸2ℎ3

𝑞0𝑎2
𝑤, σx

∗ =
ℎ2

𝑞0𝑎3
𝜎𝑥   (8) 

The convergence of the non-dimensional displacement, w* and stress, σx* results with the 
proposed solution method is compared with the finite element results in Table 1 by increasing 
series terms for the case of arbitrarily laminated [300/-300/300] plate and panel (R/a=10) 
structures with cantilever type of boundary condition in order to verify the accuracy of the 
solution. The convergence of the displacement and stress results occurs with 9x9 and 7x7 
series terms, respectively which is enough to obtain close results for the static analysis. The 
discrepancy between the converged results and finite element results can be attributed to the 
fact that force and moment type boundary conditions at the respected edges as well as 
displacement boundary conditions are certainly utilized.    
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 a/h=20, CFFF, q=-1 Pa, [300/-300/300] 

 w* σx* 

Theory R/a= 10 Plate R/a= 10 Plate 

Present (7x7) -0.8232 -0.8555 6.5737 6.2332 

Present (8x8) -0.9029 -0.9640 3.6723 4.0058 

Present (9x9) -0.8994 -0.8856 -1.2011 5.0796 

FEM -0.8949 -0.9323 6.4440 5.9785 

Error=

100
Pr

Pr

esent

ANSYSesent 
 

%5.0 %5.66 %1.97 %4.09 

Table 1. Convergence term of non-dimensional tip displacements and stresses (x=0, y=b/2) 
of composite moderately thick plate and spherical panel 

   

Figs. 2-3 present the variations of non-dimensional displacements, w* and stresses, σx* of 
arbitrarily laminated [300/-300/300], [450/-450/450] and [600/-600/600] plate and spherical (R= Rx= 
Ry) panel of square planform for varying length-to-thickness ratios, a/h. It is seen that the 
difference of the non-dimensional displacements, w* between the plate and spherical panel 
(R/a=10) results progressively increases for each [300/-300/300], [450/-450/450] and [600/-
600/600] layer orientations as the length-to-thickness ratio, a/h, increases from moderately thick 
to thin range (a/h>20), but the difference is almost the same for the range of a/h≤20. The 
magnitude of non-dimensional displacements, w* of plate and panel with [600/-600/600] layer 
orientation are relatively higher than the [300/-300/300], [450/-450/450]] layer orientations for the 
length-to-thickness ratio, a/h >20 as demonstrated in Fig.2. However, the non-dimensional 
stress, σx* results of the arbitrarily laminated [300/-300/300], [450/-450/450] and [600/-600/600] 
plate and spherical panel (R/a=10) are almost same for the entire range of length-to-thickness 
ratios, a/h. The non-dimensional stress values, σx*,  of plate and panel (R/a=10) structures for 
the all investigated lamination orientations shown in Fig. 3 decreases as the length-to-
thickness ratio, a/h, increases from thick to thin range. 

 

 
Figure 2. The non-dimensional displacements, w* with a/h ratio, of cantilever composite 

[300/-300/300], [450/-450/450] and [600/-600/600] plate and spherical panel. 
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Figure 3. The non-dimensional stresses, σx* with a/h ratio, of cantilever composite [300/-

300/300], [450/-450/450] and [600/-600/600] plate and spherical panel. 

 

Figs. 4-5 present the comparisons of the variations of the non-dimensional displacements, w* 
and stresses, σx* of [θ0/-θ0/θ0] square planform plate for different length-to-thickness ratios, 
a/h=20, 40, 60 with respect to θ0 angle variation. The magnitude of non-dimensional 
displacements, w* of [θ0/-θ0/θ0] square planform composite plate more or less steadily increase 
with the increase of lamination angle until [700/-700/700] (approx.) while it remains almost 
constant after [700/-700/700] (approx.) lamination orientation for all length-to-thickness ratio, 
a/h. However, in contrast to w*, the magnitude of non-dimensional stresses, σx*of [θ0/-θ0/θ0] 
square planform plate changes quite small between 400 and 700 angles with the increase of 
lamination angle for the all examined length-to-thickness ratios.  

 
Figure 4. The non-dimensional displacements, w* with θ0 angle variation, of cantilever 

composite [θ0/- θ0/ θ0] plate for different a/h ratios. 
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Figure 5. The non-dimensional stresses, σx* with θ0 angle variation, of cantilever composite 

[θ0/- θ0/ θ0] plate for different a/h ratios. 

 

Figs. 6-7 display the variations of the non-dimensional displacements, w* and stresses, σx* of 
[θ0/-θ0/θ0] square planform spherical panel (R/a=10) for different length-to-thickness ratios 
a/h=20, 40, 60 with respect to θ0 angle. The characteristics of non-dimensional displacement, 
w* and stress, σx* of [θ0/- θ0/ θ0] spherical panel structure exhibit almost same behavior as has 
been earlier examined for the case of plate structure in Figs. 4-5.   

 

 
Figure 6. The non-dimensional displacements, w* with θ0 angle variation, of cantilever 

composite [θ0/- θ0/ θ0] spherical panel (R/a=10) for different a/h ratios. 

 



 
AIAC-2017-054                                                 Algül, Kurtaran & Öktem 

8 
 Ankara International Aerospace Conference  

 
Figure 7. The non-dimensional stresses, σx* with θ0 angle variation, of cantilever composite 

[θ0/- θ0/ θ0] spherical panel (R/a=10) for different a/h ratios. 

 

CONCLUSIONS 
In this study, arbitrarily laminated composite cantilever plate and spherical panel examples 
were solved with Chebyshev Collocation Method. The effects of length-to-thickness ratio, 
orientation angle and radius ratio were studied. The results of Chebyshev collocation method 
were compared with those of finite element method and close results were observed.  
The brief conclusion obtained from the results in the previous section is summarized as follows: 
1) 9x9 terms and 7x7 terms can yield sufficiently accurate displacement and stress results, 
respectively with Chebyshev Collocation Method. 

2) The difference of the non-dimensional displacements, w* between the plate and spherical 
panel (R/a=10) results progressively increases for each [300/-300/300], [450/-450/450] and [600/-
600/600] layer orientations as the length-to-thickness ratio, a/h, increases from moderately thick 
to thin range (a/h>20), but the difference is almost the same for the range of a/h≤20. The 
magnitude of non-dimensional displacements, w* of plate and panel with [600/-600/600] layer 
orientation are relatively higher than the [300/-300/300], [450/-450/450]] layer orientations for the 
length-to-thickness ratio, a/h >20. However, the non-dimensional stress, σx* results of the 
arbitrarily laminated [300/-300/300], [450/-450/450] and [600/-600/600] plate and spherical panel 
(R/a=10) are almost same for the entire range of length-to-thickness ratios, a/h. The non-
dimensional stress values, σx*,  of plate and panel (R/a=10) structures for [300/-300/300], [450/-
450/450] and [600/-600/600] layer orientations decreases as the length-to-thickness ratio, a/h, 
increases from thick to thin range. 
3) The normalized tip deflection of plate and panel (R/a=10) structures increases considerably 
slowly with the increase in fiber orientation up to around θ = 20º. After θ= 20º, normalized tip 
deflection increases significantly until around θ = 70º. And also after θ= 70º, normalized tip 
deflection slope is changing insignificantly. However, the magnitude of non-dimensional 
stresses, σx*of [θ0/- θ0/ θ0] square planform plate and panel (R/a=10) changes quite small 
between 400 and 700 angles with the increase of lamination angle for the all examined length-
to-thickness ratios. 
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