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ABSTRACT 

To be competitive in the market, it is very important to design cost effective and reliable 
products. For this purpose, it is necessary to consider reliability as an integral part of the 
design procedure. Therefore, reliability which is a design parameter that affects cost and 
safety of a system should be taken into consideration in early phases since it is very difficult 
to change design at the later phases. Due to these causes the importance of reliability in 
manufacturing fields, especially in aviation field, is increasing day by day.  

 

In this paper; reliability prediction analysis is introduced for METU Tactical UAV. Reliability 
prediction for systems and items in Tactical UAV is calculated by using two different 
approaches namely; first one is that failure characteristics of items are considered as a 
constant and thus exponential distribution is applied. Secondly, simulated time to failure data 
having characteristics of Weibull distribution is used and probability distribution best 
representing the data is determined to show how predicted reliability changes if it is assumed 
to be exponentially distributed. For the simulation study, graphical approaches namely 
Quantile-Quantile plotting and probability-probability plotting have been conducted to 
determine the distribution model. Three-parameter Weibull distribution is considered to 
model simulated data; its unknown parameters have been estimated with MLE and for which 
Goodness of Fit Tests have been applied.  In this study, effect of assumption on distribution 
model to represent the simulated data has been emphasized. 
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INTRODUCTION 

Reliability is defined as the probability that an item will perform its intended function for a 
specified interval under stated conditions or the duration or probability of failure-free 
performance under stated conditions according to MIL-HDBK-338B. The main objective of 
this study is to examine the mission reliability of METU Tactical Unmanned Aerial Vehicle 
(UAV) by using different technique and distribution models based on simulation study. 
Mission reliability of Tactical UAV is assessed according to the some specified mission 
profiles which are determined based on the operational scenarios of the UAV. During the 
simulation study, effects of assumptions such as determination of distribution models and 
selection of methods to be applied to predict mission reliability of UAV are mentioned. 
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Definitions 

Definitions for Reliability, Failure, Failure Rate, Mean Time Between Failures (MTBF), Mean 
Time To Failure (MTTF) defined in MIL-HDBK-338B [Department of Defense, 2007] and MIL-
STD-785B [Department of Defense, 1998] were given. 

 

RELIABILITY MATHEMATICS 

Reliability engineering is a discipline that is heavily dependent on mathematical probabilities 
and statistics to measure and analyze data and draw inferences about present and future 
performance of items or and/or systems [Tiku, 1981]. Mathematical modeling of items and/or 
systems failures is a key parameter to obtain any idea about the performance while items 
and/or systems operate. 

 

Distributions 

Different probability distribution models such as Weibull, Normal, Exponential, Binomial, etc. 
are used to model the different periods of the “bathtub” curve mathematically. In this paper, 
both exponential distribution and Weibull distribution are taken into account. 

 

Exponential Distribution: The exponential distribution models the randomly occurring failures 
during the normal life (useful life) period of the “bathtub” curve where constant failure rate 
characteristic of items are obtained. On other rate function in the exponential distribution is 
assumed not to be changed over time. The words, failure exponential distribution has an 
advantage over other statistical (probability) distributions in that it is described totally by the 
single parameter λ, it has considerably wide applicability compared to other distributions.  
Mathematical formulation for exponential distribution is given as follows: 

 
The cumulative distribution function F(t) is defined as the probability in a random trial that the 
random variable is not greater than t. F(t) is also called unreliability function and it gives the 
percentage of the population has failed for a specific time. 






t

dttftF )()(  (1) 

Where f (t) is called probability density function and it describes the “where” failure occurs 
over time. Reliability function can be described in terms of the unreliability function since it 
represents the percentage that item has survived for a specific time. By definition, reliability 
function formula is; 


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By differentiating the reliability function; 

dt

tdR
tf

)(
)(   (3) 

Failure rate is the ratio of probability that failure occurs in the interval and it is given by; 
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As interval length ∆t approaches zero, limits of the failure rate is called instantaneous failure 
rate or specifically called “hazard rate”. 
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By substituting the differentiated reliability function equation (3) into hazard rate equation; 
hazard rate equation becomes; 
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Hazard rate or instantaneous failure rate has a significant and fundamental relationship 
because relationship does not depend on the statistical distribution. Taking the derivatives of 
both side of the hazard rate equation (6); 

dtth
tR

tdR
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Then, 
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For exponential distribution, hazard rate is assumed to be constant and denoted by λ, then 

tetR )(  
(9) 

Where R is the reliability, t is time that the item is at risk under specified operating conditions, 
and λ is the failure rate of the item. 

 

Weibull Distribution: 

 
This distribution was introduced first by a physicist, Waloddi Weibull. Three parameter 
Weibull distributions are characterized by one is the shape parameter β (dimensionless), one 
is the scale parameter or called as characteristic life η (time) and another one is threshold 
parameter or namely location parameter γ (time). Probability density function for three 
parameter Weibull is given by [Barıs, 2009]; 






















 








 

















xx
xf exp),,;(  (10) 

 Where  0βη,γ,x   

Thus, cumulative distribution function of three parameter Weibull is as follows;  
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Then, Reliability function is given as; 
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Graphical Methods 

Graphical methods are widely used methods in statistics to assess whether or not time to 
failure data follows a specific distribution profile. It briefly provides visual ways of analyzing 
distribution of variables. Probability-Probability (P-P) plot and Quantile-Quantile (Q-Q) plot 
are commonly used graphical methods to see how well a theoretical distribution models the 
empirical data. 

 

Probability-Probability (P-P) Plotting: 

The probability-probability plot (percent plot or p-p plot) compares the empirical cumulative 
distribution function of a variable with a specific theoretical cumulative distribution function. In 
the P-P plot, if data points are close to reference line, it can be said that data follows a 
specified distribution. 

 

Quantile-Quantile (Q-Q) Plotting: 

Quantile-Quantile (Q-Q) Plot is a plot of the percentiles of any specific distribution against the 
corresponding percentiles of the observed data. Q-Q plots have the basic property that if 
time to failure data has linear relation with percentiles of any distribution then the 
corresponding Q-Q plot will still be linear but with possibly changed location and slope. 
Construction of Q-Q plot bases on the cumulative distribution function of specified probability 
distributions. Assuming theoretical cumulative distribution function, F(x) then, for Q-Q 
plotting; 
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x
Z , where μ and σ are, 

respectively, location and scale parameters. This is the expected value of the ith standardized 
order statistics for a location scale family. Location scale parameter is a family of unvariate 
probability distributions parameterized by a location parameter and a non-negative scale 
parameter. 

 

For practical purposes, )4.03.0()( 1

)(   niFZE i . 

Cumulative distribution function of two parameter Weibull distribution is given by equation 
(12). Quantile function which is the inverse of cumulative distribution function is determined 
as follows; 
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Parameter Estimation 

Once the time to failure data for items is obtained, significant properties of data distribution 
including the standard deviation, mean etc., can be determined with the application of some 
methods. In the first instance, graphical methods namely; Probability-Probability (P-P) 
plotting and Quantile-Quantile (Q-Q) plotting are used to visualize that how time to failure 
data fits to some statistical distribution. These methods are useful ways of choosing among 
the types of distribution. After determination of which one of probability distribution is a good 
representation of time to failure data, task of estimation of the parameters for the probability 
distribution follows. There exist analytical techniques being taken into consideration to decide 
parameters of probability distributions i.e Weibull distribution specifically while performing this 
analysis. 
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Maximum Likelihood Method: 

Maximum likelihood estimation begins with the mathematical expression known as a 
likelihood function of the sample data. The likelihood of a set of data is the probability of 
obtaining that particular set of data given the chosen probability model.  This expression 
contains the unknown parameters. Those values of the parameter that maximize the sample 
likelihood are known as the maximum likelihood estimates. 
 
Maximum likelihood estimation addresses all the limitations of probability plots and provides 
more precise parametric fits than graphical estimation. 
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Likelihood function for two parameters Weibull distribution; and its β derivative and η 
derivative that maximizes the function, are given as follows [Balakrishnan, 2008]; 
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Firstly, scale and shape parameter are estimated with respect to equations above. Then, in 
order to determine threshold parameter; following likelihood function for estimation of 
threshold parameter is used; 
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Where, ni 1  

 

Reliability Modeling 

Main object of the reliability modeling is to provide a mathematical picture which is a 
representation of relationships between items, equipment comprising the system. While 
performing the reliability modeling; system, system elements and environmental conditions in 
which systems are expected to operate, should be defined in detail. Systems are modeled 
via using a tool called Reliability Block Diagram (RBD). “A Reliability Block Diagram is a 
method of representing, in a single and visual way, the reliability relationships between the 
system and items in the system” [Reliability: A Practitioner Guide, 2003”]. 

 
Series configuration is the most commonly used and simplest configuration in RBDs. Series 
configuration means that any one of failure in the block results in a system failure. In other 
words, successful operation of a system depends on success of all items under system. The 
reliability of a system with items of system in series cannot be greater than the reliability of 
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the least reliable component 0. Reliability model for series configuration is given in Figure 1 
below. 

 
Figure 1: Series Configuration 

 

If it is assumed that items under system are mutually independent. When calculating 
reliability for mutually independent events, probabilities of events are multiplied. The 
reliability of the system is given as follows, 

Nsystem RRRRR  .....321  (16) 

 

OVERVIEW OF METU TACTICAL UAV AND ITS SYSTEM RELIABILITY 

 

METU Tactical UAV 

Middle East Technical University (METU) Tactical UAV shown in Figure 2 has been designed 
to perform reconnaissance and observation operations and the role of METU Tactical UAV is 
completely non-lethal. It has been designed to perform reconnaissance operations for a 
certain period of time in a certain range of diameter to get information with Gimbaled 
Day/Night IR Camera System and Hyperspectral Camera System. It has been designed and 
first prototype was constructed by Aerospace Engineering Department of METU with the 
financial support of State Planning Organization in 2005. 

 

Figure 2: METU Tactical UAV 

 

Mission Profile 

In order to perform reliability modelling, mission profile analysis including flight phases and 
their related times for METU Tactical UAV is provided in this section. Figure 3 below 
indicates the mission profile that has been set for METU Tactical UAV to fly. 
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Figure 3: Mission Profile 

Table 1 below gives information about the flight phases of the Tactical UAV and 
approximated duration related to each flight phase. Definitions of flight phases have also 
been added in the Table. Tactical UAV flies with maximum endurance up to 4 hours; thus it 
will spend almost 3.4 hours of total flight time for reconnaissance missions. At worst case, 
Tactical UAV is expected to perform reconnaissance and observation missions at altitude of 
3000 m which is the highest cruise altitude of it. 
 
Table 1: Flight Phases of METU Tactical UAV Flight and Their Durations 

Flight Phases Definitions Duration (hr) 

Start/Warm-up 
UAV on the ground with engine running 
(Engine starting to Idle condition). 

0.0500 

Taxi 
UAV is moving under the power of its 
engine on runways, with guidance 
provided by the ground personal.  

0.1000 

Take-off 
Starts after taxi is complete. Generally, 
Engine of UAV runs at full power.  

0.0500 

Climb 
Starts after takeoff and ends when 
intended cruising altitude is reached. 

0.1000 

Cruise + Loiter 

Starts when UAV levels at intended 
cruising altitude and ends when UAV 
begins descent with intention to land. 
Loiter is assumed to be performed in mid-
flight. 

3.4000 

Descend 
Starts when UAV begins descent with 
intention to land. 

0.1000 

Approach 
Starts at the end of the descent phase 
and ends when landing begins. 

0.0500 

Landing 

Starts at the end of descent, and 
continues while the UAV contacts the 
ground, and until the UAV has been 
brought to a low speed under control. 

0.0500 

Taxi and OFF 

UAV is moving under the power of its 
engine on runways, with guidance 
provided by the ground personal. Finally, 
UAV becomes stationary and engine is 
shutdown. 

0.1000 

Total Flight Time 4.000 
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Systems of METU Tactical UAV 

During the design process, system to be used in the Tactical UAV has been decided by 
design team. Some of items in systems have been designed by design team whereas; some 
of them which have been already used by similar products are selected. In this study only 
Electrical System of METU Tactical UAV is taken into consideration that has two lithium 
polymer battery, 5V DC-DC Converter, 12V DC-DC Converter, one junction box and 6 
connectors.  

 
   

Table 2: Items and Components of Electrical System 

Items/Components in Electrical System Quantity 

Lithium Polymer Battery 2 

5V DC-DC Converter 1 

12V DC-DC Converter 1 

Junction Box 1 

Connector 6 

Cables N/A 

 

Component Reliability of Electrical System 

Electrical System reliability (MTBF) data will be provided according to similar approaches 
applied in aerospace industry.  MTBFs of Electrical System are calculated based on 
assumption that failure rate is constant over time and given in Table 3 below. NPRD is the 
Non-Electronic Reliability Data which is widely used database in Aerospace Industry and 
AUC denoted for environment of Airborne Uninhabited Cargo aircrafts. 

 

Table 3: Electrical System Reliability Data 

Equipment Quantity MTBF 
MTBF (AUC) 

(hours) 

Lithium Polymer Battery 2 2860     (NPRD-95-AUC) 2860 

 5V DC-DC Converter 1 5200     (NPRD-95-AUC) 5200 

12V DC-DC Converter 1 5200     (NPRD-95-AUC) 5200 

Junction Box 1 1572     (NPRD-95-AUC) 1572 

Connector 6 253000 (NPRD-95-AUC) 253000 

 

RBD of electrical system which is totally series system and it is given in Figure 4 below.  
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Figure 4: RBD of Electrical System 

 

By using equations (16) and (9), reliability of electrical system is calculated as follows: 

40.99304921SystemElectricalR    

 

SIMULATION STUDY AND RELIABILITY COMPARISONS 

 

Simulation study is conducted according to created time to failure data for both exponential 
distribution and Weibull distribution into consideration and predicted reliability of METU 
tactical UAV with two different approaches are compared. 

 

Reliability Estimation 
For the purpose of simulation study, time to failure data for each item of electrical system is 
created for both exponential distribution and Weibull distribution. Created time to failure data 
for both exponential distribution and Weibull distribution are given in Table 4.  Then, suitable 
failure distribution will be identified based on a three-step process including identification of 
possible distributions, estimation of parameters for identified distribution and application of 
goodness-of-fit tests. 
 

Table 4: Time to failure data for items under electrical system 

Lithium Polymer Battery 5V DC-DC Converter 

Exponential Data Weibull Data Exponential Data Weibull Data 

285 342 770 609 

497 854 1177 1003 

817 1114 1229 1335 

959 1190 1621 1497 

1171 1277 2455 2420 

1207 1371 2539 2482 
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1756 1392 3018 2774 

1852 1605 3525 2976 

1991 1998 3577 3957 

2102 2611 3678 4653 

2436 2631 4467 4717 

3103 2944 4687 5282 

3179 2935 5943 5308 

3733 3297 6679 5693 

4092 3298 6931 5942 

4404 3787 8316 7823 

4454 4559 8850 8535 

5251 5896 9418 8933 

6363 6960 11539 12411 

7554 7134 13670 15644 

 

12V DC-DC Converter Junction Box Connector 

Exponential 
Data 

Weibull 
Data 

Exponential 
Data 

Weibull 
Data 

Exponential 
Data 

Weibull 
Data 

770 609 196 217 31951 54024 

1177 1003 486 755 35680 84421 

1229 1335 504 760 48538 85271 

1621 1497 514 771 49767 88309 

2455 2420 642 846 51520 92295 

2539 2482 833 1019 57619 106236 

3018 2774 853 1077 59518 114860 

3525 2976 964 1173 77537 128145 

3577 3957 1115 1227 85158 168795 

3678 4653 1277 1286 91250 170727 

4467 4717 1293 1399 100371 207018 

4687 5282 1495 1431 150709 210560 

5943 5308 1548 1451 270886 229198 

6679 5693 1806 1711 282454 280665 

6931 5942 2173 1791 358128 317908 

8316 7823 2338 2028 442389 411351 

8850 8535 2566 2115 595399 440900 

9418 8933 3281 2363 684150 554837 

11539 12411 3377 3436 737368 591792 

13670 15644 4170 4593 850064 722678 

 
In order to identify candidate distribution, graphical method is basically used. Q-Q plots are 
constructed for each data set to show that exponential assumption fails when original data 
comes from Weibull Distribution and also Weibull assumption fails when original data comes 
from exponential distribution.  
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Figure 5: Connector quantile plot for Weibull distribution with shape parameter of 2.0 by 
using Weibull observed data 

 

Figure 5 shows quantile plot for Weibull distribution with shape parameter of 2.0 by using 
Weibull observed data for connector of electrical system. Quantile plotting for weibull 
distribution shape parameter of 1.5 and exponential distribution are also performed and 
provided in Figure 6 and Figure 7 respectively. 
 

 

Figure 6: Connector quantile plot for Weibull distribution with shape parameter of 1.5 by 
using Weibull observed data 
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Figure 7: Connector quantile plot for exponential distribution by using Weibull observed data 

 

The three-parameter Weibull distribution is selected based on common usage in engineering, 
and to minimize the complexity of the data analysis and also goodness-of-fit tests.  The most 
crucial advantage of this distribution is to model bathtub curve i.e. decreasing, constant, and 
increasing failure rates. 
 

Estimation of Three-parameter Weibull Distribution Parameters 
In order to estimate the parameters of three-parameter Weibull distribution, maximum 
likelihood estimation is used mathematically to fit a line to time to failure data. 
 

Table 5: Estimated Parameters of Exponential Data for Electrical System, where sample size 

(n=20) 

Electrical System 
Maximum Likelihood 

̂  ̂  ̂  

Lithium polymer 
battery 

1.476 3165 163.4 

5V DC-DC Converter 1.5151 5790.4 373 

12V DC-DC 
Converter 

1.5151 5790.4 373 

Junction Box 1.5311 1752.3 96.37 

Connector 0.9728 249711 32785 
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Table 6: Estimated Parameters of Weibull Data for Electrical System, where sample size 

(n=20) 

Electrical System 
Maximum Likelihood 

̂  ̂  ̂  

Lithium polymer 
battery 

1.5588 3195 157.4 

5V DC-DC Converter 1.4215 5738.2 362.8 

12V DC-DC 
Converter 

1.4215 5738.2 362.8 

Junction Box 1.7294 1773.4 61.87 

Connector 1.434 280843 21683 

 

Third step is the application of goodness of fit tests. Goodness-of-fit tests are means of 
examining how well a sample of data agree with assumed distribution as its population. 
There is a wide literature and study especially on exponential and normal distributions. 
However, Goodness-of-fit tests for Weibull distribution have been less studied when it is 
compared to other distributions. Some GOF approaches have been suggested by Mann, 
Scheuer and Fertig [Mann, 1974] and Tiku and Singh [Tiku, 1981]. 

 

According to the assumption that the sample comes from two parameter Weibull distribution, 
Smith and Bain statistic is on the basis of correlation between expected value of the order 
statistics and order statistics of the sample [Smith, 1976]. Smith and Bain have provided 
critical values for the samples containing 8, 20, 40, 60, or 80 observations. Tables for the 
asymptotic critical values of the Anderson-Darling A2 statistic and the Cramer-von Mises W2 
statistics for various significance levels have been produced by Stephens [Stephens, 1977]. 

 

In order to perform GOF tests for two parameter Weibull distribution for which location 
parameters are assumed to be zero, the Cramer-von Mises (W2) test and Anderson-Darling 
(A2) test are used at five different significance levels. These two tests are based on the 
empirical distribution function (EDF) which is a step function and calculated from the sample. 
EDF is measure of the difference between the EDF and given distribution function and used 
for testing the fit of the sample to the distribution.  

 

Size of exponentially created data for each item is 20, i.e. T1, T2,…, T20 and let T(1) < T(2) 
< …. < T(20) be the order statistics; and also supposing that F(T) is the cumulative 
distribution function of T. 

 

Modified Cramer-von Mises (W2): 
Equation of Cramer-von Mises (W2); 

      tdFtFtFnW n





22

 (17) 
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)(tFZ  , where  iZz   (19) 
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Substituting equation (19) into equation (18), following equation is obtained as 
 

 
 

1,...,2,1,
1

1














ni

zZ

ZzZ
n

i
nZ

n

i

n
 (20) 

 

  00 z  and   11 nz  (21) 

Then, 
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1
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



 
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









 









 (22) 

Anderson Darling (A2): 
Equation of Anderson Darling (A2); 
 

      tdF
tFtF

tFtFnA n






))(1)((
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(23) 
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1
1

1

0
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1lnln)12(
1

)1(

1

 (24) 

Main assumption for analysis to be valid is that distribution is continuous. 

 
Table 7 gives critical values for five different significance levels for both Cramer-von Mises 
(W2) and Anderson-Darling (A2) [Rasha Abdul, 2012]. 

 

Table 7: Critical values for Cramer-von Mises (W2) and Anderson-Darling (A2) 

Sample 
Size 

Test 
Statistics 

Significance Levels 

0.01 0.05 0.10 0.15 0.20 

20 
A2 0.9529 0.7539 0.6439 0.2423 0.2016 

W2 0.2369 0.2116 0.1999 0.1815 0.1659 

100 
A2 0.9556 0.7642 0.6514 0.2600 0.2078 

W2 0.2429 0.2173 0.2048 0.1881 0.1702 

 

In order to perform simulation study, 10000 random samples of size 20 for each item are 
generated and for which the goodness-of-fit test for Weibull distribution with the help of the 
tests W2 and A2 have been carried out. Number of acceptance of hypothesis for each 
significance level value of both W2 and A2 test statistics are given in Table 8. 
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Table 8: Critical values for Cramer-von Mises (W2) and Anderson-Darling (A2) when n=20 

Significance Level 
Cramer Von Mises Test 

W2 
Anderson Darling Test A2 

0.01 0.95 0.95 
0.05 0.91 0.90 
0.10 0.89 0.85 
0.15 0.84 0.75 
0.20 0.76 0.69 

 

As a result of the analysis, based on the Cramer-von Mises test statistic, approximately 95 
percent of the data are considered to agree with two parameter-Weibull distribution for 
significance level of 0.01. Thus, for exponentially created time to failure data, two-parameter 
Weibull distribution is thought to be well fitted distribution when percent of passed data sets 
for each significance level are considered. 

 

Electrical System Reliability Based on Weibull Distribution 

For the purpose of simulation study, time to failure data for each item of electrical system are 
created for both exponential and weibull data. Items reliability are recalculated by using 
equation (16) and their estimated parameters i.e. shape (β), characteristic life (η) and 
Threshold parameter (γ) given in tables 5 and Table 6.  

 

On the contrary to exponential distribution, when Weibull distribution is employed, infant 
mortality and wear out characteristics of item are taken into account for reliability estimations. 
Summary of the predicted probabilities of systems; 

 

Reliability of electrical system after simulation study (exponential data); 

Rexponential data = 0.99945656 

 

Reliability of electrical system after simulation study (weibull data); 

Rweibull data = 0,99980388 

 

Reliability Comparison 
Firstly, reliability of electrical system is calculated based on time to failure data for 
exponential distribution, namely constant failure rate. By using same data set, Weibull 
distribution assumption is performed and electrical system reliability will be calculated 
accordingly. Difference in two approaches is investigated. 

 
Table 9: Reliability Comparison for Electrical System based on exponential data 

Exponential Distribution Weibull Distribution 

0.993049214 0.99945656 

 
Table 10: Reliability Comparison for Electrical System based on weibull data 

Exponential Distribution Weibull Data 

0.993049214 0.99980388 

 

Firstly, reliability of electrical system has been calculated based on time to failure data for 
exponential distribution. It is predicted as 0.99305 according to assumption of sample data to 
be well fitted to exponential distribution, namely constant failure rate. By using same data 
set, Weibull distribution assumption is performed and electrical system reliability is calculated 
accordingly. Reliability of electrical system is 0.99946 when the assumption is Weibull 
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distribution. Both results may be considered to be so close when success point of view is into 
account. However, difference in two approaches is indeed more meaningful with respect to 
unreliability considerations. It can be concluded from the result that 695 of 100000 UAVs will 
fail to carry out mission for exponential assumption and on the other hand, 54 of 10000 UAVs 
with assumption of Weibull distribution will fail. 

 

Secondly, reliability of aircraft is also predicted and calculated when time to failure data 
having characteristics of Weibull distribution. It is observed that when the time to failure data 
has the characteristics of Weibull distribution, significant differences exist between both 
approaches.  Unreliability of electrical system is 0.0002 when the original data comes from 
Weibull distribution. It is 0.007 when exponential assumption is made and failure rate is 
assumed to be constant. 

 

CONCLUSION 
In this paper, a method is developed to show difference between common reliability 
approaches preferred in the industry and usage of time to failure data obtained from the 
actual aircraft operational environment. Although there is a lack of time to failure data 
obtained under actual operational conditions of use and environment, simulation study is 
performed. Reliability analysis model based on Exponential distribution and Weibull 
distribution approach give alternatives to the designer to select the convenient approach for a 
specific situation. 
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