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ABSTRACT

Multiscale modeling of composite materials has become quite popular for analysis of composite
structures. Progressive failure analysis of composites is one area where micromechanics based
approaches are widely used. Micromechanics approach requires the modeling of the smallest
repetitive volume, also called as the Representative Volume Element (RVE), such that volume
fraction of the RVE must be in accordance with the volume fraction of the composite material.
Current study aims to show both 2D and 3D RVE applications through a complete homogenization
process of the 3D model of the unidirectional composite material. Comparisons of the elastic
moduli determined by the 2D and 3D RVEs are formed and compared. The applicability of the
2D RVE in micromechanics analysis of a 3D macro structure is investigated.

INTRODUCTION

Mechanical analysis performed with a general �nite element software mainly depends on the homo-
geneous material models. Homogenization process is the generation of this homogeneous equivalent
(or better to say \approximate") of a heterogeneous material such as composite materials [Aboudi
J., 1991; Aboudi et al., 2012], polycrystals [Gurses et al., 2011], concrete etc. [Maekawa et al.,
2003]. Unidirectional composite materials are one of the basic models that micromechanics have been
conducted for [Torquato, S., 2002; Miehe et al., 2002].

Homogenization process can provide initial properties of the material to start an analysis with, as well
as it can be coupled to the macro model throughout the analysis to update material properties at
every iteration to include nonlinearities like plasti�cation and damage. Various applications can be
found on the so called micro-to-macro coupling ie. FE2 [Feyel, F. and Chaboche, J. L. , 2000].

Current study is a preliminary study on the calculation of the homogenized properties for unidirectional
composites. In order to obtain the complete set of material information, one needs to have directional
variables when the material is not isotropic. To achieve this, in every direction representative volume
element is tested with known input strain and calculated output stress results need to be integrated
over the domain in order to calculate the average properties such that moduli.

Micromechanics approach mainly depends on 2D RVE's since they are quite popular due to shorter
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modeling and �nite element solution times. In this study, both 2D and 3D RVE's are used to calculate
the 3D homogenized material properties and compare them from di�erent perspectives. In the 2D
RVE case, results obtained from two di�erent action planes, as shown in Figures 1 and 2, are combined
together to produce a set of complete material properties. On the other hand, in 3D RVE case, there
is only one model providing the homogenized material properties of the unidirectional composites.

REPRESENTATIVE VOLUME ELEMENT and BOUNDARY CONDITIONS

Representative Volume Element (RVE) is de�ned as a tool of micromechanics by [Hill, R., 1963] and
similarly used by many following researchers [Hashin, Z., 1983]. RVE is a material model that is large
enough to contain every variation and speci�cation of the actual heterogeneous material whereas small
enough for e�cient calculations. Usually, it is required to perform a survey on the RVE size, in order
to make sure that the average properties collected from that RVE's converged with respect to the size
of the RVE.

RVE's are conditioned and used by prede�ned boundary conditions [Miehe, C., 2003; Temizer, I.,
2010; Cioranescu, D. and Donato, P. , 1998]. There are a number of boundary condition methods
essentially based on the Hill's Energy Condition [Hill, R., 1963]. Among these methods, Periodic
Boundary Condition (PBC) is the most famous and accurate one especially for periodic structures. In
the current study PBC is used in the �nite element analyses of the RVE.

FORMATION of the 3D MATERIAL MODEL

For the calculation of the homogenized properties of the unidirectional composite, composite material
properties are chosen as it was suggested by Miehe [Miehe et al., 2002]. Matrix material has a bulk
modulus of 1740 N/mm2 and shear modulus of 800 N/mm2 and the �ber has 100 times higher
properties than the matrix material. Geometrically, RVE has �ber volume fraction of 0.1257. 2D
studies are performed by 4-noded-quadrilateral elements with plane strain formulation. 3D RVE
analyses are performed using 10-noded-tetrahedral elements. Analyses are performed by an in-house
FEM code written in FORTRAN 90.

2D RVE Results

2D RVE study is performed in two di�erent cut directions of the actual unidirectional composite
material con�guration. XZ (or YZ) plane is visualized with a centered �ber layer where as the XY
plane has a circular �ber inclusion in the center.

Summary of strain inputs used in the 2D RVE study ε̄11, ε̄22 and ε̄12. Here 1 and 2 directions are
local axes of each 2D models. They are properly matched with the 3D axes (which are named as X,
Y, Z) later in the Table 3.

2D RVE with Centered Rectangular Fiber: is shown in Figure 1 with a sample mesh con�guration.
One may easily notice that RVE model is created with proper �ber volume fraction adjustment to the
geometric value of 0.1257. In Miehe's paper [Miehe et al., 2002], it was modeled as a cut through
�ber center with a bigger �ber section which yields �ber volume fraction of 0.3, approximately. Since
the aim of the current study is to combine two di�erent models, they required to be consistent in
terms of volume fraction at �rst glance.

Analytical results and results of the current study, for the RVE with centered rectangular �ber layer,
obtained using the periodic boundary condition are given in Table 1. In Table 1, results of current
study are summarized for 7 by 7 (C1), 12 by 12 (C2) and 21 by 21 (C3) linear quadrilateral element
meshes.

2D RVE with Centered Cylindrical Fiber: is given in Figure 2. For the circular inclusion case, con-
forming mesh with linear quadrilateral elements is prepared for the �nite element analysis.

Results obtained for the in-plane elastic moduli are presented for di�erent mesh sizes in Table 2 where
C1 − C4 correspond to edgewise mesh densities of 12, 20, 40 and 80 elements, respectively.
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Figure 1: 2D RVE with Centered Rectangular

Table 1: Moduli for the 2D RVE with Centered Rectangular Fiber

Voigt Reuss Hashin Current Study
Bound Bound Shtrikman PBC Results

(+) (-) C1 C2 C3

C1111 86528 3795 38278 4382 31352 31352 31352
C2222 86528 3795 38278 4382 3206 3206 3206
C1122 32022 1405 13078 1590 1378 1378 1378
C1212 27253 1195 12600 1396 914 914 914

fiber vol. frac. 0.1257 0.1257 0.1257 0.1257 0.1257 0.1257 0.1257

C1 − C3 for edgewise mesh densities of 7, 12 and 21 respectively

Sample deformation distribution of the 2D RVE with cylindrical �ber inclusion for pure shear strain
loading with periodic boundary condition is given in Figure 3. As it is seen in the �gure, deformed
shapes of opposing edges are same. In this way, boundary condition enforces edges to behave as there
are repeating models in every direction. Main advantage of this method is the elimination of the stress
concentrations near edges and so the reduction in the necessity of using bigger models with more �ber
inclusions.

In the present study, results of the two 2D RVEs, with rectangular and cylindrical �ber layer and
inclusion, are combined in an attempt to recover the 3D homogenized material properties. In order to
understand how the results are combined, it is better to assign 3D axes de�nitions in a 3D RVE and
match those axes to their 2D counterparts. De�nition of the axes in the 3D RVE is given in Figure 4.

According to the axis de�nitions given in Figure 4, degrees of freedom of the two 2D RVE models are

Table 2: Moduli for the 2D RVE with Centered Cylindrical Fiber

Voigt Reuss Hashin Current Study
Bound Bound Shtrikman PBC Results

(+) (-) C1 C2 C3 C4

C1111 34001 2899 13885 3068 3396 3397 3399 3399
C2222 34001 2899 13885 3068 3394 3397 3399 3399
C1122 12583 1073 4753 1126 1396 1402 1405 1406
C1212 10709 913 4566 971 960 959 959 959

fiber vol. frac. 0.1257 0.1257 0.1257 0.1257 0.1223 0.1240 0.1249 0.1253

C1 − C4 for edgewise mesh densities of 12, 20, 40 and 80, respectively
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Figure 2: 2D RVE with Centered Cylindrical Fiber Inclusion

Table 3: 2D data summary with 3D axes equivalents matched

3D Elastic Moduli
Cxxxx Cyyyy Cxxyy Cxyxy Cxzxz Czzzz Cxxzz

Centered C1111 31352
Rectangular C2222 3206

Fiber C1122 1378
Inclusion C1212 914

Centered C1111 3399
Cylindrical C2222 3399

Fiber C1122 1406
Inclusion C1212 959

Assume Cyzyz = Cxzxz;Cyyzz = Cxxzz

matched with the 3D equivalents, as given in Table 3.

In recovering the 3D homogenized properties from the two 2D RVEs, transverse properties are taken
from results of the 2D RVE with centered cylindrical inclusion. On the other hand, axial properties are
taken from the results of the 2D RVE with the centered rectangular layer. It should be noted that for
the 2D RVE with centered rectangular �ber layer, �ber layer is modeled like it has rectangular cross
section such that its width goes as deep as the matrix, even though it has a cylindrical cross section.
It is assumed that this modeling technique is fair enough as long as the actual volume fraction of
the �ber is preserved as the 3D RVE. Assuming that the current examples are proper in terms of the
volume fraction requirements, resultant 3D homogenized moduli are given by Equation 1.

C3D =



C1111 C1122 C1133

C2222 C2233

C3333

C1212

C2323

C1313

 =



3399 1406 1378
3399 1378

31352
959

914
914


[Eq. 1]
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Figure 3: 2D RVE Deformation as a Result of Pure Shear Strain Loading with PBC

3D RVE Results

3D RVE solution is established by a single �nite element model, again within the in-house-FEM code.
10-noded quadratic tetrahedral elements are used. Sample model is given in Figure 4.

X,1

Y,2

Z,3

Figure 4: Axes Definition on a 3D RVE with Centered Circular Fiber and 3D RVE FEM Modal

Six di�erent strain inputs are applied on �nite element model of the 3D RVE. Strain inputs are ε11,
ε22, ε33, ε12, ε23 and ε13. In the 3D RVE case, four di�erent mesh densities are used for convergence
study. Elastic moduli calculated for each case is presented in Table 4 where the edgewise element
densities are 2, 5, 10 and 20, respectively. In Table 4, �ber volume fractions are also calculated using
the �nite element models of the 3D RVEs for four di�erent mesh sizes. It is seen that as the mesh
size is reduced, cylindrical �ber inclusion is better approximated with the tetrahedral elements used
in the 3D RVE model, and the �ber volume fraction of the �nite element model approaches to the
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Table 4: Moduli for the 3D RVE with Centered Cylindrical Fiber

Voigt Reuss Hashin Current Study
Bound Bound Shtrikman PBC Results

(+) (-) C1 C2 C3 C4

C1111 37734 3206 15471 3395 3304.4 3365.1 3386.2 3395.8
C2222 37734 3206 15471 3395 3304.4 3350.1 3386.2 3395.7
C3333 37734 3206 15471 3395 23726.2 26246.0 28160.6 28619.8
C1122 16223 1378 6301 1451 1390.6 1401.5 1419.4 1423.9
C2233 16223 1378 6301 1451 1406.4 1423.6 1439.0 1443.3
C1133 16223 1378 6301 1451 1406.4 1423.6 1439.0 1443.3
C1212 10755 914 4585 972 958.5 953.3 956.9 958.2
C2323 10755 914 4585 972 998.5 1007.3 1019.8 1023.1
C1313 10755 914 4585 972 1001.3 1013.8 1019.8 1023.1

fiber vol. frac. 0.1257 0.1257 0.1257 0.1257 0.1021 0.1131 0.1224 0.1246

C1 − C4 for edgewise mesh densities of 2, 5, 10 and 20, respectively

actual �ber volume fraction of 0.1257.

For the �ne mesh case, homogenized material properties obtained by the �nite element analysis of the
3D RVE are be organized in the matrix form as shown in Equation 2.

C3D =



3396 1424 1443
3396 1443

28620
958

1023
1023

 [Eq. 2]

Sample deformation distribution of the 3D RVE with cylindrical �ber inclusion for pure shear strain
loading with periodic boundary condition is given in Figure 5.

COMPARISON of RESULTS and CONCLUSION

In the present study, it is aimed to combine the material properties obtained from the homogenization
of two 2D RVEs to generate the 3D elastic coe�cient matrix which is also independently obtained
by the 3D RVE. The main motivation for the use of 2D RVEs is the signi�cant reduction in the
computation time required to generate the homogenized material properties which are required in
many applications in multiscale modeling and analysis of composites via FE2 approach. In this study,
it is aimed to investigate how reliable is it to combine the elastic coe�cients obtained from the analysis
of two 2D RVEs to generate the 3D elastic coe�cient matrix for a simple unidirectional �ber reinforced
composite material con�guration which essentially behaves as transversely isotropic.

In 2D RVE results, �rst obvious outcome is that at all di�erent mesh density solutions of Centered
Rectangular Fiber, resultant Moduli is exactly the same. This fact emphasizes the volume fraction
e�ect. On the other hand, in 2D RVE applications, applicant assumes constant cross section through
that view. There is no possibility to de�ne constant section through the thickness in the �rst model
(centered layer) of 2D applications as seen. One may modify this section according to his/her own
wishes but in any other section selection, it still will not represent the all section but maybe one part
of it. In this study, Centered Rectangular Fiber model is modi�ed and formed such that �ber volume
fraction is consistent and equivalent to the geometric one.

2D RVE results are calculated quite close to the 3D RVE results. 3D results are converging to a
higher values as the �ber volume fraction increases and at last step it is decided to stop, while �ber
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Figure 5: 3D RVE Deformation on Shear Strain Loading with PBC

volume fraction is just 0.1246 which is still less then actual �ber fraction. According to this fact, 3D
RVE results might get even closer to the 2D RVE results.

7
Ankara International Aerospace Conference



AIAC-2017-045 Atasoy & Kayran

References

Aboudi, J. (1991) Mechanics of Composite Materials: A Unified Micromechanical Approach,
Elseiver, 1991.

Aboudi, J.; Arnold, S. M. and Bednarcyk, B. A. (2012) Micromechanics of Composite Materials:
A Generalized Multiscale Analysis Approach, Butterworth-Heinemann, 2012.

Baker, A. A. and Dutton, S. and Kelly, D. (2004) Composite materials for aircraft structures,
Reston, VA : American Institute of Aeronautics and Astronautics, c2004.

Cioranescu, D. and Donato, P. (1998) An Introduction to Homogenization, Oxford, 1998

Feyel, F. and Chaboche, J. L., (2000) FE2 multiscale approach for modelling the elastoviscoplastic
behaviour of long fibre SiC/Ti composite materials., Computer Methods in Applied Mechanics
and Engineering, Vol: 183, Issue: 3-4, p:309-330, 2000.

Gurses, E. and Elsayed, T. (2011) A variational multiscale constitutive model for nanocrystalline
materials, Journal of the Mechanics and Physics of Solids, Vol 59(3), p: 732-749, March 2011.

Hashin, Z. (1983) Analysis of composite materials-a survey., ASME Jourbal of Applied Mechanics,
Vol 50, p: 481505, 1983.

Hill, R. (1963) Elastic properties of reinforced solids: Some theoretical principles., Journal of the
Mechanics and Physics of Solids, Vol 11, p: 357-372, 1963.

Koichi Maekawa, Tetsuya Ishida and Toshiharu Kishi (2003) Multi-scale Modeling of Concrete Per-
formance: Integrated Material and Structural Mechanics Journal of Advanced Concrete Tech-
nology Vol. 1, No. 2, p:91-126, July 2003.

Miehe, C. and Koch, A.(2002) Computational micro-to-macro transitions of discretized mi-
crostructures undergoing small strains., Archive of Applied Mechanics, Vol 72, p: 300-317, 2002.

Miehe, C. (2003) Computational micro-to-macro transitions for discretized micro-structures of
heterogeneous materials at finite strains based on the minimization of averaged incremental
energy., Computer Methods in Applied Mechanics and Engineering, Vol 192, p: 559-591, 2003.

Miehe, C. and Schroder, J. and Bayreuther, C.(2002) On the homogenization analysis of composite
materials based on discretized fluctuations on the micro-structure., ACTA Mechanica, Vol 155,
p: 1-16, 2002.

Miehe, C. and Bayreuther, C.G.(2007) On multiscale FE analyses of heterogeneous structures:
From homogenization to multigrid solvers., International Journal for Numerical Methods in En-
gineering, Vol 71, p: 1135-1180, 2007.

Temizer, I. (2010) Micromechanics Lecture Notes, Leibniz Universitat Hannover, Germany, 2010.

Torquato, S. (2002) Random Heterogeneous Materials: Microstructure and Macroscopic Proper-
ties., Springer, 2002.

8
Ankara International Aerospace Conference


