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AERODYNAMIC THRUST OPTIMIZATION OF A FLAPPING THIN AIRFOIL  

 

ABSTRACT 

The thrust optimization of a flapping airfoil is studied with utilizing unsteady aerodynamic concepts 
based on Theodorsen’s theory and Garrick’s approach which is generalized for the pitching-plunging 
and deforming airfoils via rewriting the both thrust generated by lifting force and the leading edge 
suction velocity. The thrust function which is to be maximized is written in terms of the pitch, plunge 
and the varying camber amplitudes together with their constraints which make the amplitudes 
consistent with the theory utilized here. The gradient of the thrust function and the constraint is set to 
zero to achieve the maximum thrust condition as an eigenvalue problem. The maximum eigenvalue 
gives the maximum thrust and the corresponding eigenvector gives the pitch plunge and the camber 
amplitudes. Several cases of optimization are studied which include harmonic deformation, non-
sinusoidal pitch plunge and the maximum thrust at zero freestream. The maximum thrust may give a 
poor result in terms of the aerodynamic efficiency. Here, the problem is reformulated so that the 
maximum thrust is obtained together with the desired efficiency or maximum efficiency. This requires 
solving the problem, in an iterative manner, with an additional constraint based on the desired 
efficiency or solving it with optimizing the multi-objective function.  

     

INTRODUCTION 

The studies of flapping wing aerodynamics have become quite popular since it provides quiet and 
efficient thrust, as opposed to the engine powered fixed wings, for the applications of MAV technology. 
Early 20th Century studies on flapping wing generated thrust were due to Knoller and Betz and in 
literature it is known as Knoller-Betz efffect which had been demonstrated first by [Katzmayer, 1922] 
experimentaly.  By examining the wake of an oscillating airfoil one can decide if an unsteady thrust or 
drag is generated depending on the occurence of reverse or normal Karman vortex street is 
generated. [Jones et.al., 1998] showed the role of the reduced frequency and the plunge amplitude 
product, kh, on the thrust or drag generation both experimentally and numerically. Furthermore, 
[Gulcat, 2016] demonstrated numerically the effect of the Reynolds number, in addition to the kh 
value, on switching from drag to thrust of a heaving-plunging thin airfoil. The kh=0.2  is known as the 
critical value [Platzer, et al, 2008] at which zero drag or thrust is produced at certain Reynolds number. 
As the Reynolds number increases,  thrust for lower values of kh is obtainable [Gulcat, 2009] in 
laminar fkows. The thrust generation is possible at zero free stream at low Reynolds numbers based 

on the angular frequency times the chord as the characteristic speed,  /Re 2c <1000. This was 

shown experimentally by [Wang, 2000] at high angles of attack exceeding 20o.  

Optimization of flapping airfoils for maximum thrust and effciency, based on Navier Stokes solutions, 
first appeared in [Tuncer and Kaya, 2005]. Furthermore, the nonsinusoidal path optimization of a 
priodically flapping airfoil was studied by implementing the nonuniform rational B-splines [Kaya and 
Tuncer, 2007]. Recently, the optimum thrust for a pitching-plunging airfoil at zero free stream is 
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studied theoredically and experimentally in [Bulut et al, 2016], wherein the theoretical part is based on 
the Garrick’s approach [Garrick, 1936] and its extended version in [Walker, 2012] and [Walker and 
Patil, 2014].  

The objective of this study is to obtain the maximum thrust for a simple harmonically pitching-plunging 
and morfhing airfoil in finite and zero freestreams. The study is also extended to the path optimization 
for non-sinusoidal pitch-plunge motions, where doubling the thrust generation is possible compared to 
the results obtained by sinusoidal paths. The formulations are based on ideal flow therefore some 
constraints are applied on the amplitude of the motion to satisfy the ideal flow limitations. This way, the 
problem is solved as an eigenvalue problem which gives the maximum thrust as its maximum 
eigenvalue and the amplitude of the motion as the corresponding eigenvector. In addition, emposing 
an efficiency constraint results in with an iterative solution to achieve the maximum thrust and 
corresponding motion at that efficiency or iterating for the maximum efficiency as well.  

 

METHOD 

The method used here is based on the maximizitaion of the thrust force generated by the leading edge 
suction and the unsteady lifting force of an airfoil in pitch and plunge and camber deformations. 
The leading edge suction force and the unsteady lift force contribute to the propulsive force generated 
by the flapping of a rigid airfoil is given as follows [Garrick, 1936]: 
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is the lift amplitude, where xzUziw aa  /    is the amplitude of the downwash w obtained 

from the airfoil motion ),( txzz aa  , and C(k)=F(k) + iG(k) is the Theodorsen function. 

The amplitude of the vortex sheet strength, on the other hand, is given by, in terms of the circulation 
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The integral in the second term of the right hand side can be expanded into the series in terms of 

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as follows 
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As x approaches -1, the second term vanishes to leave us with 
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i) For a heaving-plunging thin airfoil in SHM  hiwwithhetxz ti
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ii) For pitching plunging airfoil with pitch axis at ab : 

 

    Uabxixwwithabxetxz ti

a  )()()(),(  

       The leading edge suction velocity then becames 

                    UikaakCikkCkCP  ))(1(2/)1)(()(21
 

            and   the lift     akikaikakCikikkCbUL 22

1 )(2)12/)((2   

iii)  For oscillating flap   
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The leading edge suction velocity and the lift due to flap oscillations then read as [Garrick, 
1936] 
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iv) For parabolic camber oscillations:  
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            The leading edge suction force reads as 
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Using the expression for the lifting pressure the above integral reads as 
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Now we can write down a general expression for the thrust generated by a having-plunging, pitching 
and morphing thin airfoil. That is  
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Now, we can form a table showing the sectional suction and lift coefficients as follows: 

 

                           Table1:  Sectional suction and lift coefficients 
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Let us form a vector Q with elements     qhQ 


, and consider h=hr as real and 
ir i 

and 
ir iqqq  and

ir i  are complex to indicate that these are out of phase with h. Hence 

we have the complex quantities represented as a real vector 
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This enables us to write a quadratic form for the average thrust as follows  
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Hence, only the real part of the the equation above contributes to the average thrust. The imaginary 
part contains product of sine and cosine which integrates to zero over one period to give  
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Wherein, Havg is a 5x5 matrix which constitutes the quadratic form for the thrust function which has all 
real entries as functions of the reduced frequency k and the real and imaginary parts of the 
Theodorsen function, i.e.  F and G. 

Optimization  

The average thrust function given with (5) can be maximized if its gradient is set equal to zero, i.e. 
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Where,   
T

Q
max  is the vector which gives the maximum value of the average thrust. The solution of 

this equation is trivial since the Havg is not singular. On the other hand, the derivation of the equation is 
based on the linear aerodynamic theory, therefore, any increase in the elements of Q causes increase 
in thrust. Hence, there is not any maximum as the problem posed. However, we can find a maximum 
thrust if we impose restrictions on the motion as constraint. There are several ways to impose the 
constraint for the optimization; one of them is the magnitude constraint.  

Magnitude constraint: Both aerodynamic and the mechanical restrictions can justify the magnitude 
constraint in the following form 
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With this restriction, we stop the increase in maximum thrust with setting a limit to the magnitude of the 
motion. In the design space this constraint will put a peak to the maximum thrust. Hence, we can write 
the constraint as an equality, i.e. 

                                                1)(  QQQf
T

 

This enables us to write a Lagrangian composed of the average thrust function and the constraint 
without altering the value of the average thrust to be maximized as follows: 
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Wherein,  is the Lagrange multiplier for the constraint. Now, we can set the gradient of the 

Lagrangian (7) to zero to obtain 
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                                                  02  QQHbU avg                                                         (7-b) 

                                                               01QQ
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The first equation is nothing but an eigenvalue problem. It has n principle directions and corresponding 
n eigenvalues in general. The largest eigenvalue is the maximum average thrust and the 
corresponding eigenvector gives the associated motion and the deformation vector. With the aid of the 
second equation we can prove that the Lagrangian is the maximum. If we rewrite the Lagrangian with   
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Example: 

Let us consider a thin airfoil undergoing plunge-pitch and morfhing simultaneously at k=0.5. Let us find 
the maximum value of the aerodynamic thrust and the corresponding motion and the deformation.   

Using above the formulation given, with pitch point changing, we find the values given in the following 

Table 2, where )/(),( 2

maxmaxmax bUQLT   

                           Table2: Maximum average thrust for various pitch points. 

                   a              Tmax               h*            r              i               qr               qi   

                -1.0           1.9578     0.9368      0.1379      -0.2986      -0.0609      -0.1025 

                -0.5           1.5298     0.9577      0.1093      -0.2485       -0.0491     -0.0823 

                 0.0           1.2505     0.9656      0.0804      -0.2380       -0.0325     -0.0590 

 

As seen from the Table 2, the minimum of the maximum thrust occurs for the pitch point located at 
midchord. The pitch point location towards the leading edge increases the value of the thrust within 
the limits of the linear theory. The choice of pitch point location away from the midchord towards the 
trailing edge increases the maximum thrust but the motion associated with exceeds the limits of linear 
theory. 

Efficiency constraint 

The thrust optimization with magnitude constraint does not necessarily result in most efficient solution. 
Therefore, we need to consider the optimization aiming a desired efficiency. For this purpose, the 
efficiency can be forced to a certain value while the thrust is made maximum. Hence, generating a 
Pareto front for thrust and efficiency is the proper way of optimizing the thrust with efficiency 
constraint. (On the other hand, the problem of efficiency constraint without a magnitude constraint is 
not a well posed problem and is not considered.) The thrust efficiency is defined as the ratio of the 
work generated by thrust to the work required for the motion of the airfoil. Thus it is  
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Substituting the motion and the deformation parameters of the airfoil, this result can be written in 
matrix form as follows 

                               QHQbUW avg
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The efficiency constraint can be written in terms of chosen reference efficiency as follows 
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Then we have  
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This enables us to write the Lagrangian  
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Here,   is the Lagrange multiplier for the efficiency constraint. Now, we can find the maximum of it 

by setting the gradient of the Lagrangian [10] to zero vector to get 
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                                01QQ
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                                                                                            (11-a,b,c) 

                                  0 QHHQ Mrefavg

T
  

This is no longer an eigenvalue problem. It involves N unknowns for the motion and the deformation 
amplitudes and also 2 Lagrange multipliers to result in to solve N+2 nonlinear equations. For the 
solution we use an iterative method for systems. Sole efficiency constraint problem without a 
magnitude constraint looks like a generalized eigenvalue problem, however, it turns out to be an ill-
posed problem, and therefore it is not looked into. For any given efficiency value, we can solve the 
double eigenvalue problem with an iterative procedure as described below. (On the other hand, the 
solution for the maximum thrust case provides a reasonably good estimate to start the iterations for 
the numerical method to create a specific front for the optimization.)  

Let   f(xi)=0 be the non-linear system of equations to be solved iteratively. Expanding if about xi and 

setting it to zero, in indicial notation, gives 
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For each iteration, the following matrix equation is solved for jx   

                                   

j

i
ijij

j

ij
x

f
cwithfxc




   

Hence,                 i
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i xxx     until convergence! 

The elements of the matrix cij and the load vector fi are given in the appendix of the paper. 

As an application to the efficiency constraint the pitching-plunging airfoil with k=0.5 having various 
efficiencies the following results from (11) are obtained and provided at Table 3. 
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               Table3: Optimum Values obtained with efficiency constraints   for k=0.5 

                                  Tmax                h*            r              i            1           2      

                  0.30          0.2127      0.9752     0.2111      0.0663      0.2127     0.1795 

                  0.40          0.2139      0.9760     0.2074     -0.0661      0.2139    -0.1332   

                  0.50          0.2031      0.9677     0.1958     -0.1590      0.2031    -0.3174 

                  0.60          0.1902      0.9592     0.1770     -0.2219      0.1901    -0.4014    

                  0.70          0.1786      0.9520     0.1591     -0.2648      0.1783    -0.4263 

                  0.11          0.2158      0.9776     0.2104     -0.0085  (no efficiency constraint) 

                  0.77          0.1397      0.9612     0.2174     -0.1699  (maximum efficiency)  

The convergence is quite fast. Above results are obtained with 3 decimal place accuracy in 4 iterations 
and with 6th decimal place accuracy in 10 iterations. If one compares the results for the efficiencies for 
0.30 and 0.60, one finds that the efficiency is doubled whereas the maximum thrust is reduced only 
10%. The last row of Table 3 shows the results of the case for which only the magnitude constraint is 
considered, wherein Tmax=0.2158 is found as the highest eigenvalue with the lowest efficiency. 

Efficiency optimization  

Using multi-objective optimization, it is possible to optimize the motion to yield the maximum 
efficiency. The multi-objective optimization requires an iterative procedure, because of nonlinear 
dependence of the efficiency on the motion. based on the creation of a Pareto front while maximizing 
the average thrust. The previously defined efficiency in terms of the motion Q reads 

                                         
    

    QHQ

QHQ

W

W

M

T

avg

T

M

T                                            

Now, we want to maximize the efficiency as well as the average thrust function with magnitude 

constraint. This requires maximization of (7-a) which is  ),(1 QL  and ),(2 QL  which is the 

efficiency. The maximization of the efficiency requires 0/),(2  QQL  . Hence, we get 

                                         
     

0
2




M

MTavgM

W

QHWQHW
 

Combining maximization of L1 and L2 yields  

                                             0)()(2  QQHQWQHQWHbU MTavgMavg   

as a new eigenvalue problem which is nonlinear due to presence of WM ( Q ) and WT ( Q ). These 

new set of equations converge to 4 decimal places in 4 iterations to give the last row of Table 3. For 
this case, efficiency is the highest but the average thrust is the lowest as given in Table 3. 

Zero freestream  

The thrust generated at zero freestream represents the case which corresponds to the motion starting 
from the rest. The reduced frequency at zero free stream becomes infinity, therefore, the Theodorsen 

Function 5.0)( C . This gives us the Table 4 as follows 

                                         Table4:  Suction and lift coefficients for U=0 
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Figure 1. shows the various positions of the deforming thin airfoil while pitching and plunging with 
maximum thrust.  

 

Figure 1: Motion & Deformation of thin airfoil for zero free stream at a=-0.5 and  1 , 

 ( plunging for  0<t<3.2 and heaving for 3.2<t<4.2) 

 

Non-sinusoidal  path optimization  

We can have an airfoil which may not necessarily flap simple harmonically to produce high 
aerodynamic thrust. For that purpose we can employ non-uniform rational B splines (NURBS) like 
described and implemented in [Kaya and Tuncer, 2007]. Let in two dimensions S(u)=[x(u), y(u)] be the 
smooth curve described with the following parametric representation 
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The non-sinusoidal periodic function is then defined as 

                      f[u( t )] = y(u) = f( t )     where            

0)(

)(
)tan(

Puy

ux
t


  

For a known t  the above equation is solved for u to determine y(u)=f( t ). Here, x and y determine 

a closed curve where P0 defines the center and P1 and P2 indicates the flatness of the NURBS curve. 
Once the NURBS curve are found, the pitch-plunge motion is described as  

                                )(),(    tftfhh h                                                              (12) 

Where,  is the angular frequency, Ubk /  is the reduced frequency and  is the phase 

difference with pitch and plunge.  

The thrust optimized results are here, borrowed from [Kaya and Tuncer, 2007], for k=0.5 and h=0.5 

reads as ,4.41,2.21 00    P0h=-0.9,  P1h= P2h=3.5, 2.0,8.0 210   PPP .  

Shown in Figure 2 is the periodic path of the pitch and plunge obtained with above parameters. 

t=0 

t=3.2 

t=1.5 

t=4.2 
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Figure 2:   Normalized x-y loop for plunge (left) and pitch-plunge amplitude variation for a period. 
 

Based on the Wagner function [BAH], now, we can evaluate the thrust induced by the nonsinusoidal 
motion as follows. The contribution of the lift to the thrust can be found directly by means of Wagner 
function.  The leading edge suction’s contribution, however, requires extra considerations. The leading 
edge suction velocity for a pitching-plunging motion of an airfoil with the aid of Table.1 (for a=0) is 
given as  

                    2/)1)((2)(2)(2 bkCUkChkCP                      (13) 

If we collect the coefficients for the motion together we obtain 

                    2/)2/)((2 bbUhkCP     

The term in the parenthesis is nothing but the downwash of the arbitrary motion at the quarter chord of 
the airfoil. Hence,  

                    2/)2/,()(2 bbtwkCP                                                      (14) 

With the aid of Fourier transform the first term of P can be written for all the frequencies involved in the 
arbitrary non-sinusoidal unit change w0 in downwash as follows  

                    bUtsandUbkbdke
ik

kC
wsP iks //,2/

)(
)( 0  





  

The improper complex integral is related to the well known Wagner function )(s so that      

2/)(2)( 0 bswsP       with    




  ssiks eedke
ik

kC
s 3.00455.0 335.0165.01

)(

2

1
)(


  

Here, the Wagner function is the indicial admittance for unit excitation. For the arbitrary downwash 
w(t,b/2) the leading edge suction velocity becomes  

                   2/)(),2/()0(),2/(2)(
0

bdsbwsbwsP

s

 







                          (15) 

This is very similar to the lift and moment generated by the arbitrary motion which read as                    

                    







   dsbwsbwUbUhbsL

s

0

)(),2/()0(),2/(2)( 


        (16) 

            







   dsbwsbwUbUbbsM

s

0

2 )(),2/()0(),2/(2/4/)(  (17) 

The total thrust due the leading edge suction and the lift is found from 
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)( 2 LbPS    

and plotted on the Figure 3.                                    

 

Figure 3:  Thrust variation for a period 
 

The time averaged unsteady thrust coefficient, integrated over one period of time gives the following 
thrust average thrust coefficient  CT = 0.72 as opposed to the sinusoidally generated optimum thrust 
coefficient Ct = 0.31. 

The aerodynamic efficiency is defined before for the sinusoidal motions. For the non-sinusoidal pitch-
plunge the the work done by the motion is the product of the force with the vertical velocity over a 
period of motion, hence                                
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This equation is simplified with performing the integral over the chord to get 

                    dtUCUdtUhCUW

T

M

T

LM  
0

2

0

2 )(
2

1
)(

2

1
                                             (18) 

We can, now, calculate the value of the efficiency for the above example using the Wagner function to 
evaluate CL and CM from (16) and (17). Thus, the numerical value of the efficiency becomes 

                                                          28.0
M

T

W

W
                                                                         (19) 

Thrust at Zero Free-Stream: Non-sinusoidal optimum solutions at zero free stream can be obtained 
with setting U=0 for the leading edge suction velocity P and the sectional lift L from (15) and (16): 

           2/)()()0()(2)(
0

bdshshsP

s

  







     and       hbsL


)(   (20-a,b) 

Shown in Figure 4 is the normalized thrust coefficient variation in one period of flapping. 
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Figure 4:  Normalized thrust, )/( 32 bT  , variation for one period of flapping. 

The averaged thrust coefficient from Figure 4 reads as 1.74 which is much higher than the thrust 
coefficient obtained with the sinusoidal flapping. 

Above optimization is not based on any constraint. Next, we introduce the optimization with magnitude 
constraint.  

Magnitude Constraint: The thrust function S can be optimized, using P and L expressions given 
above, for the non-sinusoidal flapping motion as an eigenvalue problem as follows. 

                                         
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                                                              (21) 

The eigenvalues of (21) read as min = -0.7912   and    max =  0.7869, and the corresponding 

eigenvectors are xmin= (0.2646, 0.9644) and xmax= (-0.9644, 0.2646). Hence, example problem solved 
with the pitch-plunge motion constraint as described before gives the maximum thrust coefficient as 
CT=0.78 with  

                                )(26.0)(96.0),(    txftftxz ha
                                                       (22) 

Shown in Figure 5 is the thrust variation based on the magnitude constraint. 

 

Figure 5:  Normalized thrust variation for the optimization with magnitude constraint 

Power Extraction: By means of a periodic motion, sinusoidal or non-sinusoidal, it is possible to obtain 
negative thrust which implies power extraction from the airfoil.  The optimum power extraction with 
non-sinusoidal oscillations is obtained with magnitude constraint as follows: 

                                                       )(96.0)(26.0),(    tfxtftxz ha                             (23) 

The drag coefficient for this case reads as CD=-0.79. The variation of the drag coefficient is shown in 
Figure 6. 
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Figure 6: Normalized drag coefficient variation for the non-sinusoidal power extraction. 

CONCLUSIONS 

The aerodynamic thrust optimization of a thin airfoil is made for both simple harmonic and non-
sinusoidal paths. Pitch, plunge and chord wise morphing of the airfoil are considered. The motion on-
set from the rest is also studied under the thrust optimization at zero free stream. Finally, the 
maximum power extraction via flapping is studied.  The following facts are observed: 

i) Pitch point location has an effect on the magnitude of the thrust; the thrust increases as 
the pitch point moves from mid-chord towards the leading edge, 

ii) the magnitude constraint renders the problem to an eigenvalue problem while maximizing 
the Lagrangian, 

iii) comparison with the experimental study is satisfactory, especially at high reduced 
frequencies, 

iv) efficiency constraint is a good tool to increase the performance with small loss of thrust 
amplitude, 

v) imposing the efficiency constraint makes the problem solution in an iterative way which 
may yield to non-converging solutions if high efficiencies are sought, 

vi) maximization of the efficiency results in low average thrust value, 

vii) non-sinusoidal path optimization gives much more thrust compared to the sinusoidal path 
optimizations, 

viii) maximum thrust occurs at high plunge low pitch amplitudes, whereas maximum power 
extraction occurs at low plunge and high pitch amplitudes. 

Appendix 

The elements of Havg and Hm matrices are 

 
Havg(1,1)=2*(F*F+G*G)*k*k; 
Havg (1,2)=2*k*F*F-k*F-G*k*k+2*G*G*k;  
Havg(1,3)=(F*F+G*G)*k*k-F*k*k+k*k/2+G*k; 
Havg(2,2)=0.5*(F*F+G*G)*k*k+2*F*F-k*k*F-2*F+2*G*G+k*k/2-G*k; Havg(3,3)= Havg(2,2); 
Havg(2,1)= Havg(1,2); Havg(3,1)= Havg(1,3); 
 
and, 

Hm(1,1)=4*F*k*k; Hm(1,2)=2*G*k+k*k; Hm(1,3)=2*F*k-2*G*k*k; 
Hm(2,1)= Hm(1,2); Hm(3,1)= Hm(1,3); 
Hm(2,2)=-2*G*k+k*k-F*k*k; Hm(3,3)= Hm(2,2); 
 

Now, the set of equations were                                   

                                        02  QHHQQHbU Mrefavgavg     

                                                                                   01QQ
T
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                                                                 0 QHHQ Mrefavg

T
  

Let    avgij Hofelementsthebea   and    Mrefavgij HHofelementsthebeb   

Setting the unknown vector x = Q, then the equations in indicial notain (repeated index implies 
summation) read as 
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Wherein,  and are additional unknowns which make the system totally quadratic.  

For 3-degrees of freedom we have 3 parameters of motion, one for plunging and two for pitching, and 
2 Lagrange multipliers as unknowns. Hence, the iterative equations with variable coefficient matrix and 
the unknown vector read as 
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Where, 
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Here, known values of xi,  and from the previous iteration level are used in the coefficient matrix 

and in the load vector. 
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