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ABSTRACT 

Two-degrees-of-freedom (2-dof) helicopters are widely used test platforms in control 
laboratories due to their high non-linearity and the coupling between axial motions. The 
computer assisted structure provides a rapid prototyping environment for testing the 
designed approaches. This paper presents an experimental comparison of fuzzy control, 
sliding mode control, backstepping control and passivity-based sliding mode control on a 2-
dof helicopter. The design steps are given and the comparison is done under few metrics 
quantifying the steady state and transient qualities for each embedded software approach. 
The contribution of the paper is to unfold the application specific issues of frequently 
experimented control schemes as well as to demonstrate the prominent results of passivity 
based design oriented control software comparatively to control platform developers and 
practitioners. 
 

INTRODUCTION 

The notion of nonlinear control system design has been an interesting topic for years and the 
main reason for that has been the diversity of dynamical forms and associated solution 
methods. Despite the linear control courses convey a comprehensive curriculum to the 
practicing engineers; it is not at that maturity for the nonlinear control applications. 
Experimental comparison works, in this sense, fills an important gap as there are issues of 
nonlinear and coupled dynamics, actuation impreciseness, and high performance 
expectations and so on. This paper aims to address this goal to the extent covering several 
popular nonlinear control laws implemented on a 2-dof helicopter system, also called twin-
rotor system. The paper treats these schemes as software components as the methods are 
all implemented on computer platforms having the capability of handling different levels of 
computational intensity that change from one approach to another. 

In a study done in past, a comparison has been made between intelligent and conventional 
control methods through simulations and the accuracy of intelligent systems is emphasized 
by [Juang et al., 2008]. In the study of [Ahmad et al., 2003], a linear quadratic Gaussian 
control is realized for a real time tracking application on a twin-rotor system, and as the 
result, high-amplitude oscillations are observed in the steady state. Two works focusing on a 
laboratory type helicopter consider nonlinear L2 and H∞ approaches and present successful 
results in a real time tracking, [Lopez-Martinez et al., 2007; Lopez-Martinez et al., 2005]. [Shaik 
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and Purwar, 2009] realized a nonlinear state observer design for twin rotor system, and the 
study of [Juang et al., 2008] utilizes a PID reinforced with genetic algorithm for the control of 
2-DOF helicopter.  

The first approach considered in this paper is fuzzy control which is a control scheme based 
on the fuzzy logic, which is a method exploiting the verbal and local descriptions of maps 
through fuzzy sets, [Mendel, 2001]. A real time implementation study on a 2-dof helicopter 
proposes a hybrid control scheme consisting of both fuzzy and PID techniques, and the 
performance improvement is demonstrated when the fuzzy approach is incorporated into the 
control system [Rahideh and Shaheed, 2009]. Two studies utilize fuzzy approach to model the 
system by Takagi-Sugeno fuzzy modeling method with parallel distributed compensation and 
design the controllers through this fuzzy model of 2-dof helicopter [Yu, 2007; Agudelo et al., 
2007]. The study of [Tao et al., 2010], presents a sliding mode controller benefiting from 
fuzzy logic for a twin rotor system. 

Second method considered for comparison in this paper is sliding mode control (SMC) 
postulated by Emelyanov in early 1950s. SMC is an elegant control scheme that is known for 
its insensitivity against disturbances and uncertainties. A comprehensive survey providing 
the state of the art of recent developments in SMC have been presented by [Yu and Kaynak, 
2009]. A thorough treatment of the approach for electromechanical systems is described in 
[Utkin et al., 2009]; and many studies highlighting the new directions and improvements in 
SMC are reported, such as fractional fuzzy adaptive SMC in [Efe, 2008], or the adaptive 
fuzzy SMC used for synchronization of two different chaotic systems by [Roopaei and 
Jahromi, 2008]. Su et al. realized the control twin rotor system by utilising inverse 
complementary and terminal SMCs, [Su et al., 2002]. 

The third control approach utilized in this work is backstepping which has been proposed by 
Kokotovic and employed by numerous researchers during the last few decades, The 
references [Bridges et al., 1995; Krstic et al., 1995; Freeman, 2008] are the key contributions 
to the backstepping method. In [Frazzoli et al., 2000] designs a tracking controller for a small 
scale helicopter using backstepping technique and provides simulation results. Another work 
establishes a backstepping controller for a quadrotor type helicopter through the dynamics 
described in Lagrangian form [Das et al., 2009]. An adaptive backstepping controller is used 
in [Yang and Hsu, 2009] considering unknown system parameters, and the designed 
controller is tested experimentally on the twin-rotor system considered here. 

The last scheme is designed using the passivity formalism. The extension of passivity 
approach in control theory, called passivity-based control (PBC), benefits from the results of 
Lyapunov stability theory. A remarkable work discussing the issues in passivity, 
backstepping and SMC approaches is by Khalil, [23]. A reference book by Ortega considers 
the control of Euler-Lagrange based models including electromechanical systems, such as 
manipulators, electric machines, and power converters, by using PBC, [Ortega, 1998]. In 
[Koshkouei, 2008], Koshkouei proposes a passivity-based sliding mode control (PB-SMC) 
scheme including linear and adaptive nonlinear variants. Ma et al. presents a PB-SMC 
strategy that is applied to control a current-source inverter, [Ma et al., 2009]. A recent trend in 
the applications of passivity based design is the blending of the approach with other 
techniques. Wang and Chen provide a PB-SMC designed to control the position of an 
induction motor and demonstrates experimental results, [Wang and Chen, 2005]. 

This paper is organized as follows. The second section gives the derivation of the dynamic 
model of the helicopter, the third section presents the fuzzy control of the system, the sliding 
mode control of the helicopter is focused on in the fourth section, backstepping control 
technique is elaborated in the fifth section, passivity based sliding mode control scheme is 
studied as the last scheme in section six. The concluding remarks are given at the end of the 
paper. 
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DYNAMIC MODEL OF 2-DOF HELICOPTER SYSTEM 
2-DOF helicopter utilized in this work consists of a fuselage that is equipped with two different types of 
DC motors with propellers and mounted on a fixed base as shown in Figure 1. The main propeller of 
helicopter controls the pitch angle (θ) defined as the angle between helicopter nose and horizontal. 
The rotational position of helicopter around the fixed base is defined as yaw angle (ψ) and controlled 
by the tail propeller. Numerical data are associated to these angles are measured by two encoders 
mounted on the fixed base and transmitted to Matlab/Simulink® environment on a desktop PC via a 
data acquisition board and a PCI card in real time. The software development platform is based on 
Matlab® and the approaches yet to be discussed are all prototyped in this environment. 
In all experiments presented, the initial and minimum value of pitch angle is −40.5 degrees and the 
maximum is restricted to 35 degrees (θ0=−40.5˚, −40.5˚≤ θ ≤ 35˚). Initial position of yaw angle is 
always accepted as the zero degree position and the slip ring mechanism of fixed base allows the 
helicopter to rotate freely over 360 degrees (ψ0=0˚,|ψ|≤ 360˚). Positive directions of motion are 
defined as clockwise rotation for yaw angle and upwards movement of the helicopter nose for pitch 
angle as shown in Figure 2. The pitch motor is called the main motor and the yaw motor is called the 
tail motor also. 
In the literature, there are several researches that propose models for 2-DOF helicopter system 
through analytical and soft computing methods such as [Toha and Tokhi, 2010; Subudhi and Jena, 
2009]. The mathematical models of systems play a leading role in the success of model based 
controllers. Correspondingly the way chosen to obtain the mathematical model has considerable 
effects on the performance of a closed loop controller based on the available model. In this study, the 
equations of motion of the system are derived by using the Lagrangian method. A comparison of the 
Newtonian and Lagrangian models of a 2-DOF helicopter, which includes all steps of modelling, is 
presented by [Rahideh and Shaheed, 2006] and it is claimed that the Lagrangian method contains the 
representational details better. 
The Euler-Lagrange equations of the system are 
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where L, called Lagrangian variable, is the difference between potential and kinetic energy of the 

system. Generalized coordinates are given by T[ ]q      

 

and generalized forces are given 

by (3)-(4), respectively 

   
pympmp BVVQ  ,,1 ,  (3) 

   yympmy BVVQ  ,,2 ,  (4) 

where Bp and By are viscous rotary frictions acting on pitch and yaw movements. The torques, p and 
y, are functions of both voltages applied to pitch and yaw motors. Due to the coupling between the 
axial motions, the voltage applied to one axis is seen also in the torque expression of the other axis, 
which is clear in the below equations. 

  ympypmppympmp VKVKVV ,,,, )(,    (5) 

  ymyypmypympmy VKVKVV ,,,, ,   (6) 

In above, the subscripts p and y denote the pitch and yaw axes respectively and other then Kpp, the 
coefficients are constant. Due to high nonlinearity, we develop a model for Kpp experimentally which is 
a second order polynomial of θ given in (7). Other plant parameters are listed in Table 1 as provided 
by the manufacturer of the system. 

1624.010281.710535.9)( 426   ppK  (7) 

After straightforward mathematical manipulations detailed in [Quanser Inc., 2006], nonlinear ordinary 
differential equations of the motion are obtained as below. 
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State space model of the system, used frequently in model based controller design, is defined as (10) 
through (13) by defining the positions and velocities as the state variables. 
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Table 1: Parameters describing the 2-DOF Helicopter 

Symbol Explanation Value 

Bp Viscous friction on pitch motion 0.8000 N/V 
By Viscous friction on yaw motion 0.3180 N/V 
g Acceleration due to gravity 9.8100 m/s2 
Jp Moment of inertia about pitch axis 0.0384 kg ∙ m2 
Jy Moment of inertia about yaw axis 0.0432 kg ∙ m2 
mh Mass of helicopter 1.3872 kg 
rp Distance from pivot to pitch motor 0.1969 m 
ry Distance from pivot to yaw motor 0.1683 m 
lcm Distance from pivot to center of mass 0.1857 m 
Kpp Relation between pitch motor voltage 

and the torque acting on pitch axis 
See text N∙ m/V 

Kpy Ratio between pitch motor voltage and 
the torque acting on yaw axis 

0.0068 N∙ m/V 

Kyp Ratio between yaw motor voltage and 
the torque acting on pitch axis 

0.0219 N∙ m/V 

Kyy Ratio between yaw motor voltage and 
the torque acting on yaw axis 

0.0720 N∙ m/V 
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The control problem is to maintain the necessary angles by appropriately scheduling the motor 
voltages denoted by Vm,p and Vm,y. In the sequel, we describe three schemes with a comparison of the 
approaches experimented in real time. 
 

FUZZY CONTROL 
Fuzzy control is a rule based control technique that allows controlling processes through the 
descriptions of system behavior in terms of linguistic variables constituting a rule structure. Crisp 
inputs are mapped to crisp outputs by an appropriately designed inference system as prescribed by 
the rule base. The flow of information through the fuzzy controller undergoes fuzzification and 
defuzzification stages enabling the designer to make choices from a diverse set of possibilities. 
Designing the resolution of the rule base and the type of inference are other flexibilities provided to the 
design engineer. The underlying philosophy is to incorporate the experiences of an expert into the 
design or to come up with a design that is mostly based on the physics of the process, utilizing the 
possibilities available in the domain of linguistic labels. The reason motivating us to experiment fuzzy 
control technique is mainly because of the appropriateness of the behavior of the helicopter system. 
This paper aims to accomplish a tracking task by two individual controllers for pitch and yaw angles. In 
this case, robustness of controllers is a vital necessity because a movement in an axis reverberates as 
a disturbance on the other axis, which emphasized the coupling effect in between the axes. Input 
output relations of the designed Sugeno type fuzzy controllers can be given in the form of fuzzy basis 
functions as in (14). 
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where m = 2 in our case and the subscript (p,y) denotes that the controller belongs to either pitch 
angle or yaw angle. The parameters e1,p and e1,y are angular position errors, e2,p and e2,y are angular 
velocity errors. µij,p and µij,y are membership functions of pitch and yaw angles, respectively. Both 
controllers are established with R = 25 rules described via triangular membership functions. The 
inputs to the pitch angle controller are (e1,p, e2,p) and that for the yaw angle controller are (e1,y, e2,y). 
The control signals (up, uy), driving the motors, are obtained in Volts as crisp output from (14). Rule 
bases of pitch and yaw angles have the structure given as below. 
 

IF e1,p  Pp and e2,p  Qp THEN up = yi,p     i = 1, 2,…, R 

IF e1,y  Py and e2,y  Qy THEN uy = yi,y    i = 1, 2,…, R 

For producing necessary control signals driving the main motor, both pitch error and pitch position are 
essential. More explicitly, main motor needs a higher voltage level to settle the helicopter nose at a 
higher position than lower positions in steady state. This shows that the needed control surface is not 
symmetric. Consequently, defuzzifier parameters of pitch controller (yi,p) are produced through an 
angle-voltage characteristic shown in Figure 3 determined experimentally. This characteristic is 
obtained as a result of a set of open loop tests and it shows the steady state pitch angle value for an 
applied input voltage to the main motor of the helicopter. An approximation is performed with a sixth 
order polynomial given in (15) and defuzzifier parameters are chosen after numerous experiments 
carried out on the system and the content is given in (16). In (16), different from the standard practice 
of fuzzy logic control, a nonlinear bias, p(x), is utilized to provide the necessary asymmetry mentioned 
above. 

9 6 8 5 7 4 5 3 2( ) 1.153 10   6.621 10 5.047 10 6.48 10 0.00144   0.08096  15.79p x                     (15) 

T

( ) [10 9 8 6 1.5 4.5 3 2 0 2.5 2 0.5 0

0.4 1.5 1.5 0.3 1.5 2.5 4 1 5 8 9 10]

p p xy   

            
(16) 

Contrariwise, defuzzifier parameters of the yaw controller (yi,y) are selected directly as constant values 
based on the gained experimental insight and the chosen values are given in (17), where the induced 
control surface is symmetric as the parameters and the membership functions are symmetric. 
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The selections are done in the range of input voltage limits of the motors, i.e. ±24 Volts for the main 
motor and ±15 Volts for the tail motor. Since the gravitational force (Fg) is sufficient to reduce the pitch 
angle, there is no need to quantify the main motor input with negative values. Accordingly, (16) is 
adjusted so as to produce always positive valued outputs. Likewise, positive voltage values are not 
used for the tail motor due to the force stemming from the coupling between the axes. 
Membership functions (µij,p, µij,y), seen in (14) are depicted in Figure 4. The mathematical 
descriptions of the membership functions are given in (18) through (22) corresponding to the linguistic 
variables labeled as Big Negative (BN), Negative (N), Zero (Z), Positive (P) and Big Positive (BP). 
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The definitions of the parameters L and LB can be seen in Figure 4, the chosen values of these 
parameters are listed in Table 2. The membership functions are then implemented in Matlab/Simulink® 
environment with these settings. Thus, the design of the fuzzy control system is completed and the 
control surfaces obtained from the fuzzy controller dedicated to pitch and yaw angles are constructed 
as illustrated in Figure 5 and Figure 6. 
 

Table 2: L and LB selections  

Paramete
r 

Explanation Value 

L        for; Position error of pitch angle 0.5 degree 
 Velocity error of pitch angle 1.5 degree/sec 
 Position error of yaw angle 0.5 degree 
 Velocity error of yaw angle 3 degree/sec 
LB       for; Position error of pitch angle 10 degree 
 Velocity error of pitch angle 25 degree/sec 
 Position error of yaw angle 5 degree 
 Velocity error of yaw angle 20 degree/sec 

 
For real time tracking applications, reference path is chosen as a mixture of a sine wave trajectory 
followed by a square wave one. This choice is deliberate as we would like to see the performance of 
the system when the reference signals are differentiable and when they contain sharp changes. As 
seen in Figure 3, the problematic region of pitch axis is between 15 and 25 degrees. To make the 
tracking more challenging, the amplitude of reference path is chosen as 20 degrees and tracking of 
both pitch and yaw angles are performed simultaneously. Real time implementation results are given 
in Figures 7-8 for pitch and yaw angles, respectively. According to the results, the states follow their 
desired values accurately, the response during the transient regime and the steady state regimes are 
seen acceptable. The fuzzy logic controller is able to synthesize the control signals having some 
degrees of complexity seen from the time evolution of the applied motor voltages. Expectedly, the 
conclusion drawn from this section is the necessity to some degree of expert knowledge to refine the 
controller for a better closed loop performance. 

SLIDING MODE CONTROL 
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Sliding mode control is a widely known nonlinear control scheme that is preferred because of its 
robustness against unmodeled dynamics and disturbances caused by different kinds of internal and 
external factors. The methodology of SMC guides the vector of chosen states from any initial point of 
the phase space to a prespecified and particularly designed subspace, which is a global attractor due 
to the design and once the trajectories get trapped to it, the motion afterwards takes place in the 
vicinity of it. The errors gradually converge to the origin and the control scheme borrows its name from 
the sliding behavior arising along the designed subspace. For a tracking implementation, it is common 
to choose the states as the tracking error and its derivatives of order up to a specific value. Having this 
in mind, referring to the state space model described in (10) through (13), error components are 
defined as below. 

   
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 

0 1 1
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de t x r t

e t x r
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(25) 

where all variables on the left hand side are 2×1 matrices and, r1 and r2, respectively, denote the 
reference paths for pitch and yaw angles and their derivatives are defined as 

 T1 1 2,d dr r r    (26) 

Furthermore, r2 is assumed to be differentiable for the design phase. Resetting of the integration is 
utilized in real time applications. The integrator is reset when the desired value is reached, i.e. e1=0. 
Such a resetting scheme prevents the potential oscillations and overshoots during the 
implementations. Switching function to derive the control laws is defined as 
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(28) 

Since we need a stable locus described by σ = 0, the values seen above are chosen such that 
s2+1s+0=0 is Hurwitz, where s is the Laplace variable. Calculating the time derivative of the 
switching function lets us have the following: 
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(29) 

In order to establish the reaching regime in the phase space, we choose the control signal such that 
the reaching law in (30) is satisfied. 

 : sgn    (30) 
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0
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(31) 

This particular selection implies that the closed loop system is Lyapunov stable. The proof is 
straightforward. For such a Φ, reaching law guarantees the convergence of any initial value of the 
error vector to the switching subspace characterized by s = 0, which is stable by the design, [Ertuğrul 
et al., 1996; Tokat et al., 2009]. The response after hitting the switching surface exhibits a certain 
degree of robustness and invariance properties as it is confined to the switching subspace. Solving 
(29) and (30) for u gives the control law 

        1

2 1 2 0 1, sgnu t g f r e e            (32) 

where the nonsingularity of g(θ) is a necessity. The critical value of Kpp making g(θ) singular is 
0.00207, yet this variable is always greater than the critical value. 
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Once the sliding regime starts, the control law above becomes quite sensitive to the value of , which 
is small in magnitude and naturally noisy. In this regime, if no precautions are taken, the sign of the 
switching variable is determined mainly by the noise and this causes severely corrupted control 
signals, called chattering in the literature. In order to avoid this, the sign function is approximated by a 
continuous function providing a smooth transition around origin yet introducing a tiny boundary layer 
around the sliding subspace. 

  0,sgn , 






















 


















  (33) 

During the real time implementation, the term in (33) is saturated as given by 

min max 0.1, ,0.5


 



 

  
  
    

. This prevents the overshoots arising right after the falling and rising 

edges of square reference without affecting the stability conclusion of the closed loop system. As 
mentioned previously, the produced control signals are saturated to their physical limits, which is hard 
constraint. The controller in (32) is implemented in Matlab/Simulink® platform and the reference signal 
is chosen the same as in the previous section. After a number of experiments, the parameters to be 
selected by the designer are fixed as listed in Table 3. Real time implementation results are depicted 
in Figures 9-10 for pitch and yaw angles, respectively. It is seen that the helicopter followed the 
desired trajectories with an acceptable error margin, however there are high frequency fluctuations in 
the control signals indicating some amount of chattering available in the phase space behavior shown 
in Figures 11-12. According to the results obtained in the phase space, it is seen that the errors hit the 
sliding surface and remains on it. The errors finally converge to the origin. The results in Figures 11-12 
illustrate different temporal intervals so as to make it visible what happens initially, and what happens 
for continuous and discontinuous reference profiles. 
 

Table 3: Parameter Settings of SMC Scheme 

Paramete
r 

Explanation Value 

Φ θ Reaching law parameter of pitch angle 20 
Φ ψ Reaching law parameter of yaw angle 10.5 
λ0, θ The slope parameter of error integration of pitch angle 0.15 
λ0, ψ The slope parameter of error integration of yaw angle 1 
λ1, θ The slope parameter of error of pitch angle 0.8 
λ1, ψ The slope parameter of error of yaw angle 5 
δθ Signum smoothing parameter of pitch angle 0.25 
δψ Signum smoothing parameter of yaw angle 0.2 

The conclusions drawn in this scheme are the presence of high frequency components in the control 
signal as a price paid for the robustness against disturbances and parameter uncertainties. Switching 
nature of the control law makes is vulnerable to noise yet it makes the overall control system robust. 
 

BACKSTEPPING CONTROL 
Backstepping is one of the frequently experimented nonlinear control strategies in the literature. The 
design philosophy is based on the use of each state variable to stabilise another, organized in a chain 
structure from the input to output, thus, the stabilization of every state variable is ensured individually. 
The controller design procedure of backstepping method aims to construct a recursive algorithm 
defining virtual states to make the control law obtainable. 
As in the previous sections, we have designed two individual controllers for pitch and yaw motions by 
referring to the state space model defined in (10) through (13). The reference signal (r) definitions are 
the same as in the previous section. The tracking problem can be transformed to a stabilization 
problem by choosing the following intermediate variables. 

111 : rxz   (34) 
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2 2 2:z x r   (35) 

where Λ is a variable yet to be selected to meet the stability criterion. Choosing 

T
1 1 1

1

2
V z z  (36) 

as the Lyapunov function candidate and taking its time derivative can be manipulated as given in (37). 

 
 
 

T
1 1 1

T
1 1 1
T
1 2 2
T
1 2

V z z

z x r

z x r

z z



 

 

  

 

 
 

(37) 

where Λ is chosen as described by (38). 

   1 1 1 1, 1, 1, 1,: sat , diag , 0 , 0k z k k k k k          (38) 

The term sat(z1) used above corresponds to the saturation function described as given below. 

 
1

, ,

1 1 1 , , , ,
, ,

1

if

sat if , , , 0, 0, 0, 0

if

h h
l h

l h l h l l h h
l h

l l

z

z z z

z

 
   

 

   
       

 
 


              
       

 (39) 

This Λ selection lets us have T T
1 1 1 1 1 2sat( )V z k z z z  

 

, the second term of which will be handled 

appropriately in the second step of the design. Now choose the following Lyapunov function; 

T
2 1 2 2

1

2
V V z z   (40) 

Ensuring the negativity of the expression in (40) guarantees the global stability in the coordinates 
described by the intermediate variables. Taking the time derivative of (40) yields the expressions in 
(41), where we see the external control variables explicitly. 

 
 
   
   
      

T
2 1 2 2

T T T
1 1 1 1 2 2 2
T T T
1 1 1 2 1 2 2
T T
1 1 1 2 1 2
T T
1 1 1 2 1 2 2

T T
1 1 1 2 1 2

sat

sat

sat

sat

sat ,

V V z z

z k z z z z z

z k z z z z z

z k z z z z

z k z z z x r

z k z z z f g u r  

 

   

   

   

      

       

  







 



 

(41) 

Equating the sum in the parentheses to  –k2z2  as given below leads to the control law in (43). 

     1 2 2 2 2 2, 2, 2, 2,, : , diag , 0 , 0z f g u r k z k k k k k             

 

(42) 

    1
2 2 2 1,u g f r k z z         (43) 

According to the definition in (39), we have 1z    when z1 is in between or equal to the defined upper 

and lower bounds, otherwise 0  . The voltages applied to the motors are further saturated to their 
physical limits. The controller is realized in Matlab/Simulink® environment with the settings listed in 
Table 4. Trajectory tracking results are shown in Figures 13-14 for pitch and yaw angles respectively. 
As seen in the illustrations, the desired trajectories are followed in both directions accurately. The 
control signals are distinguishably clearer than those produced by the controllers considered so far 
and the tracking precision is satisfactorily good. 
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Table 4: Parameter settings of backstepping scheme  

Paramete
r 

Explanation Value 

k1,θ Coefficient of z1 for pitch angle 3 
k1,ψ Coefficient of z1 for yaw angle 13 
k2,θ Coefficient of z2 for pitch angle 40 
k2,ψ Coefficient of z2 for yaw angle 15.4 
φl,θ Lower limit of sat(z1) for pitch angle -0.1 
φl,ψ Lower limit of sat(z1) for yaw angle -0.0175 
φh,θ  Upper limit of sat(z1) for pitch angle 0.116 
φh,ψ Upper limit of sat(z1) for yaw angle 0.035 

 

PASSIVITY-BASED SLIDING MODE CONTROL 
Passivity formalism has a wide range of applications in feedback control theory. Its connection with 
Lyapunov stability theory makes it an approach standing on a strong basis. The philosophy of 
passivity based control rests on the notions of passivity, zero state observability and Lyapunov 
stability. By using the storage function of passivity as a candidate Lyapunov function, a stability rule is 
obtained, additionally, if the zero state observability is fulfilled, the stability of the origin is ensured. 
Various methods, like SMC or backstepping design can be embedded into the passivity formalism to 
meet the prespecified performance criteria. In this section, a passivity-based controller is designed by 
utilizing the sliding mode approach. 
Consider the system, 

 
)(

)(

xhy

uxgxfx




 (44) 

where f, g and h are smooth functions of the state, and suppose this system is 
i. passive with a positive definite storage function (V) and 

ii. zero-state observable. 

The control law given as u = - Γ(y), where Γ is any smooth function such that Γ(0) = 0 and yTΓ(y) > 
0 for all y other than zero, can stabilize the origin (x = 0) of system in (44). Furthermore, if the storage 
function (V) is radially unbounded, the system (44) can be globally stabilized by u .This well known 
passivity based control theorem is explained in detail by [Khalil, 2002]. 
In order to provide the simplicity of controller design process, in this section the helicopter system is 
considered as in (45) instead of the state space representation used before. 

     ,D q q C q q q Bq G q         (45) 

where the matrices of inertia (D), damping (C), viscous friction (B), gravity (G), applied torque (τ), 
state vector (q), voltage-torque ratio (g(θ)) and the control input of motor voltages (u) are as given 
below. 

   
, ,

ppp py

yp yy y

VK K
q g u

K K V





   

      
      

 (46) 

 
2

2 2

0

0 cos
p h cm

h h cm

J m l
D q

J m l 
 

   
 (47) 

 
2

2

0 sin cos
,

2 sin cos 0
h cm

h cm

m l
C q q

m l

 
 

 
   





 (48) 
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0

0
p

y

B
B

B

 
  

 
 (49) 

 
cos

0
h cmm gl

G q
 

  
 

 (50) 

 g u   (51) 

The vector of tracking error is defined as e dq q q   where the desired position is designated with 

, ,
T[ , ]

d d d
q q q

 
 . The dynamic equation of system (45) is written in the form below by using the qe 

definition. 

          ,e d e d e dD q q q C q q q q B q q G q               (52) 

The terms which include the vector of error qe are left alone in the left hand side of equation and 
consequently an error system is obtained. 

         , ,e e e d d dD q q C q q q Bq G q D q q C q q q Bq               (53) 

System output y = h(x) for this approach is chosen as a switching function (s) constituting the sliding 
line in the phase space. 

 ,e ey s q q   (54) 

: e es q q   (55) 

where the parameter β is chosen as below to make the switching function (s) Hurwitz. 

 diag , 0 , 0           (56) 

The selection in (54) when maintained at zero provides the sliding mode property to the passivity–
based control system. Chosen storage function candidate is 

T1
:

2
V s Ds  (57) 

which is positive definite and its derivative can be evaluated as in (58) considering (53) and (55). 

 

   

   

T T

T

T

T

T

T

1

2
1

2

1 1

2 2

1 1

2 2

1 1

2 2

e e e e

d d d e e e e e

d e e e

e

V s Ds s Ds

s Ds Ds

s Dq D q Dq D q

s G q Dq Cq Bq Cq Bq D q Dq D q

s G q Dq B C q D q Dq D q

s G q B C q D q

 

  

  

 

 

   
 
     
 
           
 
         
 

     

 



   

       

    

     1

2d e eq D q q   
 

 

 

(58) 

At this step, the appropriate τ choice is  

       1
:

2e d e eG q B C q D q q D q q v              (59) 
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where the variable v is a newly defined virtual input. Accordingly, the derivative of storage function 
given in (58) takes the form below. 

TV s v  (60) 

The fictitious control term v is determined as 

   1sat tanv s s      (61) 

where sat(s) is the saturation function defined to limit s with a positive constant ϕ as below. 

The choice above affects the control signal when a decrease in the pitch angle is commanded. Due to 
the gravity, helicopter pitch angle decreases by itself and a limit is imposed to at a level of 0.23 to 
keep the main motor on. The effect of an upper bounding saturation in (51) has no effect in the cases 
where the helicopter pitch angle increases. The other parameters describing v are  

Rewriting (60) with the fictitious control input in (61) yields the following derivative; 

    1sat tan 0TV s s s       (64) 

which satisfies the inequalities (65),(66) and (67) of being a passive system with the output y s  and 

the input    1( ) sat tanv y s s        . 

Tv y V   (65) 

T ( ) 0, 0y y y     (66) 

(0) 0   (67) 

Moreover, when v = 0, 

0 0y s    (68) 

which indicates that the only solution providing the system output as zero is s = 0. A single point 

solution ( 0, 0)q q   is entailed for zero state observability, however in this case a set including the 

required point is the solution. This solution set is a desired subspace designed by us in the phase 
space, and it forms the sliding line (s). It is known from SMC theory, when the error vector reaches the 

sliding line, it is going to converge to the origin ( 0, 0)q q  which is also the required solution point. 

Therefore the ultimate solution is the origin of phase space and the system is zero state observable. 
By this way, the passivity of the system is ensured between the input v and the switching function (s) 
by using state feedback as discussed by [Byrnes et al., 1991]. Consequently, it is shown that the 
reaching of the error vector from any initial point to the desired subspace is globally stabilizable by the 
control input v. This methodology provides SMC to benefit from passivity for guiding the error vector to 
the desired subspace and holding it in the vicinity of there. As the last step of PB-SMC design, the 
overall control signal is obtained as given below. 

           1 11
tan

2e d e eu g G q B C q D q q D q q sat s s              
 

   
 

(69) 

where the inverse of g(θ) always exists. In the real time implementation, due to the effect of the 
gravity, the term tan−1(s) used in (61) is limited between (-∞, 0.23] for pitch output and the hard 
limiters for the control signal are employed also in this scheme. The parameters involved in the design 

 
if

sat , , 0, 0
if

s
s

s s


 


 
  


 

       
 (62) 

 
 

, 0, 0

, 0 , 0

diag

diag

   

   

    

    

  

  
 (63) 
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are listed in Table 5 and the values have been refined after a set of experiments. The tracking task is 
performed for the same reference path as in previous sections and the tracking results of pitch and 
yaw are shown by Figures (15)-(16). The tracking performance of PB-SMC is satisfactory when the 
transient and steady state errors are taken into consideration. The results shown are achieved by 
visibly clear control signals for both axes. 
 

Table 5: Parameter settings of PB-SMC scheme 

Paramete
r 

Explanation Value 

γθ Reaching law parameter of pitch angle 2 
γψ Reaching law parameter of yaw angle 2 
βθ The slope parameter of sliding line for pitch angle 1.1 
βψ The slope parameter of sliding line for yaw angle 2 
ωθ Coefficient of switching function (s) for pitch angle 2 
ωψ Coefficient of switching function (s) for yaw angle 2 
ϕ θ  Upper limit of sat(s) for pitch angle 0.23 
ϕ ψ Upper limit of sat(s) for yaw angle ∞ 

 
COMPARISON OF CONTROL METHODS 

Real time performances of the implemented control schemes are compared under a set of measures 
tabulated in Table 6. Comparison is based on several criteria which are the quality of control signal, 
tracking error, steady state error and rise time. Tracking errors are quantified by their mean and 
variance values for each method and each axis. The quality of control signals are labeled as low, 
medium and high with regard to their smoothness.  
 

Table 6: Comparison of controllers in terms of mean and variance values of tracking 
error and generated control signal 

Angle type Controller type 
Tracking error Rise 

time 
t=60s 

Steady 
state error 

(deg) 
t=60-65s 

Smoothness 
of control 

signal  Mean Variance

Pitch 
angle 

Fuzzy control 2.55 64.61 62.33 -0.3 L 

 SMC 2.37 58.71 62.02 0.8 L 
 Backstepping c. 2.70 68.74 61.73 0.5 M 
 PB-SMC 2.38 58.96 61.59 0.4 H 
Yaw angle Fuzzy control 3.80 96.39 63.26 -0.2 H 
 SMC 2.72 65.35 62.50 0.2 L 
 Backstepping c. 2.95 67.41 63.14 0.3 M 
 PB-SMC 2.61 62.23 61.96 0.2 M 

 
Referring to the results in Table 6, one can see that PB-SMC and SMC approaches have the minimum 
tracking error values for the pitch angle. On the other hand, the control signal generated by PB-SMC 
has the highest smoothness. Backstepping controller also produces a smooth control signal, however 
it yields the largest error mean for the pitch angle. PB-SMC reached to lower error levels with a clear 
control signal; therefore the performance of passivity based approach is prominent in the pitch angle. 
For the control of the yaw angle, SMC and PB-SMC are again the best performing schemes. PB-SMC 
achieves the minimum values for the mean and variance of the tracking errors. Backstepping 
controller produces higher tracking error; nevertheless the control signal is smooth enough. Likewise, 
the control signal of fuzzy controller for yaw angle is the smoothest one, and apparently, the mean of 
tracking error of yaw angle has the highest value. When the reference trajectory for both axes is equal 
to 20 degrees and a rising pulse is applied, i.e. t[60 70] sec., shortest rising times are observed for 
the backstepping control and PB-SMC for pitch angle. For yaw angle, SMC and PB-SMC yield a 
quicker climb toward the setpoint. Hence, one can see that PB-SMC is the best control scheme in 
terms of the small rising time criterion. Lowest steady state error for pitch angle is obtained by fuzzy 
control, and PB-SMC is the second. Steady state error of yaw angle is almost same for all control 
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strategies; however, the performance of backstepping controller is slightly poorer than the others. As a 
last comment, the chattering phenomenon observed for PB-SMC is significantly weaker than that in 
the SMC approach as the role of the signum term in PB-SMC technique is not the essential 
component as in the case of SMC. 
 

CONCLUSIONS 
Software centric control of processes is the recent trend on control engineering and practitioners 
frequently benefit from the possibilities offered by design platforms like Matlab to unfold interesting 
process responses and to observe desired behavior. The way to this goal is to design a software tool 
having a consistent mathematical basis as discussed in this paper. This paper focuses on several 
control schemes, including fuzzy control, backstepping control, SMC and PB-SMC, which are all 
software components coded appropriately. Fuzzy control has a linguistic structure overpassing the 
dynamical difficulties of systems. Backstepping technique is a good implementation of Lyapunov 
stability criterion which has an important place in control theory. Sliding mode control is known with its 
robustness against disturbances and parameter uncertainties. The last control technique included in 
this study is called passivity based sliding mode control obtained by defining the sliding mode control 
law under the circumstance that the passivity of the system is ensured. The first three methods are 
chosen to compare different philosophies which have high reputation in control theory. The last control 
scheme proposed is incorporated into this comparison to develop the performance of SMC which gave 
better results than both fuzzy and backstepping techniques. The aim of the paper is to implement 
these techniques and perform real time tracking experiments on a 2-dof helicopter, known for its high 
non-linearity and the coupling between its axial motions. The tracking task is accomplished parallel to 
the expectations put forth theoretically and a comparison is made. The tracking errors and control 
signals are checked for all schemes. According the metrics considered in the comparison work, PB-
SMC approach has displayed the most desired closed loop control features. 
The results of the comparison justify the strength of SMC approach against disturbances and 
parametric uncertainties. The incorporation of passivity approach into SMC yields a more powerful 
control scheme (PB-SMC). While the robustness of SMC is preserved, the well known weakness, 
called chattering, of SMC is improved. Accordingly the control signal quality is increased in terms of its 
smoothness. In conclusion, though all controllers perform well in accurate tracking criterion, sliding 
mode based approaches produce the best results. Overall, the paper contributes an in-depth 
performance comparison of several nonlinear control techniques on a real time nonlinear system and 
offers PB-SMC as the most desirable control technique. 
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Figure 1: 2-DOF Helicopter 

 
 
 
 
 
 
 
 

 

Figure 2: Dynamic model of 2-DOF Helicopter 
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Figure 3: Steady state pitch angle – Main motor voltage input curve 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Membership functions 
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Figure 5: Control surface of the pitch angle fuzzy system 

 
 

 
Figure 6: Control surface of the yaw angle fuzzy system 
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Figure 7: Pitch angle tracking (top), tracking error (middle) and control signal generated by the fuzzy 

controller (bottom). 
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Figure 8: Yaw angle tracking (top), tracking error (middle) and control signal generated by the fuzzy 

controller (bottom). 
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Figure 9: Pitch angle tracking (top), tracking error (middle) and control signal generated by the sliding 

mode controller (bottom). 
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Figure 10: Yaw angle tracking (top), tracking error (middle) and control signal generated by the sliding 

mode controller (bottom). 
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Figure 11: The error vector trajectory corresponding to pitch angle in the phase space for different 

periods of real time application. 
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Figure 12: The error vector trajectory corresponding to yaw angle in the phase space for different 

periods of real time application. 
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Figure 13: Pitch angle tracking (top), tracking error (middle) and control signal generated by the 

backstepping controller (bottom). 
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Figure 14: Yaw angle tracking (top), tracking error (middle) and control signal generated by the 

backstepping controller (bottom). 
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Figure 15: Pitch angle tracking (top), tracking error (middle) and control signal generated by the PB-

SMC (bottom). 
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Figure 16: Yaw angle tracking (top), tracking error (middle) and control signal generated by the PB-

SMC (bottom). 
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