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ABSTRACT

For the rotorcraft systems, system identification is a challenging problem since the aerodynamics,
structure, and environment of the rotorcraft platform are highly coupled with each other. In this
study, we propose a deep learning architecture with multiple semi-decoupled hidden layers. Net-
work architecture is constructed for an unmanned VTOL aircraft platform. It’s layer placements
are constructed regarding the physical aspects of the motion of considered aerial vehicle. In the
end, accurate deep learning model is obtained, and the findings are illustrated with simulations.

INTRODUCTION

Deep learning has gained signi�cant importance with the advancing computer technology. With its
increasing power, the applications of the deep learning algorithms become larger including the �nger-
print recognition [Wang, 2014], image classi�cation for large dataset [Krizhevsky, 2012], language
translation [Collobert, 2008], and system identi�cation of dynamic systems [Ogunmolu, 2016]. In
this study, we make use of the deep learning for the system identi�cation of the novel vertical takeo�
landing (VTOL) capable aircraft. The control allocation in the designed VTOL aircraft is quite distinct
than the previous designs in the literature, it is harder to obtain a high �delity model of the aircraft
dynamics.

Especially for the rotorcraft systems, system identi�cation becomes a challenging problem since the
aerodynamics, structure, and environment of the rotorcraft platform are highly coupled with each
other. In order to address this question, many works have been done related to system identi�cation
of rotorcraft systems [Sguanci, 2012; Wu, 2014; Mettler, 2000; Kaymak, 2013]. In older works, either
time domain or frequency domain approaches with di�erent optimization algorithms are used. But
recently with the rise of Deep Neural Networks, researchers started using di�erent type of Neural
Networks to overcome rotorcraft system identi�cation challenges.

Most of the research in this area are devoted to model of Helicopter Dynamics [Manso, 2015; Punjani,
2015; Abbeel, 2010]. In [Manso, 2015], the authors proposed a Support Vector Regression (SVR)
algorithm to to predict pitch angle response of a helicopter to a longitudinal control input using
advanced ight simulator data. Although model seems promising, it is just a simpli�cation of complete
model since it just considers longitudinal input and pitch angle. Entire dynamics of an aerobatic
helicopter is considered in [Punjani, 2015]. A ReLU Network Model is developed. This network is a
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Figure 1: Conceptual and CAD Drawings of VTOL UAV[Onen, 2015]

combination of a Quadratic Lag Model which is a physics based model and a two layer neural network
(NN). With their special initialization and optimization techniques, developed model match quite well
with test data in all ight regimes. Since they are using quadratic lag model, parameters of this model
should be selected carefully regarding physics of ight. To overcome this part, we developed a neural
network, which does not require any physical model.

In this study, we propose a deep learning architecture with multiple semi-decoupled hidden layers
to obtain an accurate dynamic model of the novel VTOL unmanned aircraft platform. It is known
that some certain states and control inputs are dominant on the pitch channel, and some others are
dominant on the roll and/or yaw channels. Further, it is also known that the yaw and roll motion
are not so distinguishable, and they can be considered together in the lateral dynamics. Although,
the lateral and longitudinal motions have weak couplings when the aircraft is modeled with simple
dynamics, there may be strong couplings for the high �delity models, as well. In our semi-decoupled
multilayer architecture, all these information are embedded to the layer structure, and the number of
neurons in each layer. Further, a new activation function is employed in the network. In the end,
accurate deep learning model is obtained, and the �ndings are illustrated with simulations.

PROBLEM DESCRIPTION

The dynamics of the VTOL aircraft can be considered as:

x(k + 1) = f(k, τ(k), x(k), γ) (1)

where x(k) ∈ <n is the state vector, f(k, τ(k), x(k), γ) is a mapping, τ(k) ∈ <m with m ≤ n is the
control input, γ ∈ <s is the time-independent parameters. For simplicity, the arguments 'k' denoting
the time dependencies are dropped from the variables if they are not crucial for the formulation. The
states x(k), and the control inputs τ(k) are given as:

x =
[
u v w p q r θ φ

]T
τ =

[
Ω1 Ω2 Ω3 δ

]T (2)

where u, v, w are body velocities in X,Y, Z directions (resp.), p, q, r are angular rate components
about X,Y, Z directions (resp.), and θ, φ are the pitch and roll attitudes (resp.). Ωi is the rpm
control for the ith motor, δ is the tilt control for the aft motor. Conceptual and CAD drawings of the
VTOL unmanned aerial vehicle (UAV) are given in �gure 1.

The function f(·, ·, ·, ·) which is a mapping for the ideal behavior of the rotorcraft is highly nonlinear,
and its structure is highly complex. Thus, it is impossible to model the rotorcraft exactly with
the known modeling and identi�cation techniques. In this study, we will approximate the mapping
f : <×<m ×<n ×<s → <n with a deep learning model f̂ : <×<m<n → <n such that the overall
dynamics becomes:

x(k + 1) = f̂(k, τ(k), x(k);W ) + ε(k, x(k)) (3)
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where x(k) ∈ Dx ⊂ <n, ‖ε(k, x(k))‖ ≤ ε0 ∀k ≥ 0, ∀x(k) ∈ Dx, andW is the NN model parameters.
The set Dx can be enlarged by using as many distinct samples as possible in the training. Therefore,
without loss of generality, we assume that the set Dx is su�ciently large. The upper bound ε0 for the
residual can be made arbitrarily small by increasing the dimension of the deep learning model. The
inputs for the deep learning model will be the time instant k for determining the width of the window,
the system states x(k), and the control inputs τ(k). Then, the outputs are the system states at the
next time instant x(k + 1).

DEEP LEARNING MODEL

ANN Architecture

Three minor motions of the aircraft about the principal axes X,Y, Z are called roll, pitch, and yaw.
Therefore, the �rst hidden layer is divided into three channels representing these motions. In many
aerial vehicles, the general motion of the aircraft can be collected under two major titles which are
longitudinal and lateral-directional motions. The longitudinal motion is highly dominated by the pitch
channel. On the other hand, the lateral-directional motion consists of strong couplings of yaw and roll
channels. Regarding these information, pitch channel in the NN architecture is directly connected to
the longitudinal channel whereas roll and yaw channel are combined in the lateral channel. Eventually,
longitudinal and lateral channels construct the general motion of the aircraft which is progressed the
second hidden layer. The NN architecture is given in �gure 2. We will call our NN architecture as
metaNet for the rest of the paper.
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Figure 2: Neural Network Architecture
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Input Structure

The inputs for the metaNet consisting of system states and control inputs are divided into three
channels which are corresponding to the pitch, yaw, and roll. The dominant NN model inputs for
pitch channel are given as:

xp =
[
Ω1 Ω2 Ω3 δ q θ u w

]
(4)

where xp is the set of NN model inputs passing through the pitch channel in the �rst hidden layer.
Similarly, NN model inputs for the roll and yaw channels are determined as:

xr =
[
Ω1 Ω2 p φ

]
xy =

[
Ω1 Ω2 Ω3 δ r v

] (5)

where xr and xy denote the set of inputs for the roll and yaw channels, respectively. Since we are
interested in the solution of the di�erence equation (3), we pay attention to the system state history
and control input history to obtain the system states at the latter time instant. Let ζ be the set of
dummy variables ζ = {Ω1,Ω2,Ω3, δ, u, v, w, p, q, r, θ, φ}, and ζi be the ith element of the set ζ. Let
us take the dummy variable ζ5 = u, for example, to give concrete example. As we said, time histories
of the control inputs and the system states are taken into account. Then, we state our stacked
elements in a vector ξi = [u(k − d), u(k − d + 1), . . . , u(k)] for the ith variable ζi = u. We have
the same stacking story for every variable ζi for i = 1, 2, . . . , 12. In each NN input sets, there exist
signi�cant variations in the order of elements. For instance, the control input for the motors are given
in Ωi ∈ [1100, 1700] whereas the body velocity components u, v, w are such that u, v, w ∈ [−30, 30].
Thus, we employ mean-max normalization to each NN model inputs. That is:

ξi =
ξi −mean(ξi)

max (|ξi|)
(6)

where the operator | · | takes the absolute value of each element of ξi which is the normalization of ξi.
As a result, intervals for each parameters are transformed to the [−1, 1]; i.e. ξi ∈ [−1, 1]. Eventually,
the NN model inputs become:

Xp =
[
ξ1 ξ2 ξ3 ξ4 ξ5 ξ7 ξ9 ξ11

]
Xr =

[
ξ1 ξ2 ξ8 ξ12

]
Xy =

[
ξ1 ξ2 ξ3 ξ4 ξ6 ξ10

] (7)

where Xp, Xr, Xy are the stacked NN model inputs for the pitch, roll, and yaw channels, respectively.
The label for the jth sample is the vector system states of jth at time instant k + 1; that is Yj =[
ζ5(k + 1) ζ6(k + 1) . . . ζ12(k + 1)

]
where ζi's are belonging to jth sample.

Activation Function

As an activation function, we developed a modi�ed version of Recti�ed Linear Unit (ReLU) which
is called Biased Leaky Recti�ed Linear Unit (BL-ReLU). This function is constructed by considering
the problem in our hand. As an biological motivation, the neuron generates an action potential or
'spike' when su�cient input is received [Yi, 2015]. In Arti�cial Neural Networks, activation function
plays the role of spike in real neurons. ReLU activation function, spikes when its input is greater than
zero. But for our problem in hand using ReLU neglects the negative input which is important for
us. Because of this reason, our activation function works in absolute region which means it activates
neurons if functions absolute input is greater than some threshold λ which creates nonlinearity and
using di�erent slopes α, β for negative and positive regions are enabled to increase the nonlinearity.
In �gure 3, the activation function BL-ReLU is illustrated. For our problem since both negative and
positive regions have the same priority, activating neurons in this regions using BL-ReLU function still
preserves its biological meaning.
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Figure 3: Biased Leaky Rectified Linear Unit (BL-ReLU)

Cost Function and Optimization (Training)

In this work, we are using mean square error with L2 regularization with constant regularization
parameter γ.

L(y, ŷ;W ) =
1

N

N∑
1

∥∥∥Y − Ŷ ∥∥∥2 +
γ

N

l∑
1

∥∥∥W (l)
∥∥∥2 (8)

where W (l) is the parameters at the layer l with l = 1, 2, 3, Ŷ is the estimation of the labels Y .

For optimization, cost function (8) is minimized using gradient descent algorithm. For parameter
update, constant learning rate Γ is used.

min
W

L(y, ŷ;W ) (9)

Cross-Validation and Testing

First, the dataset is randomly mixed. Then, the entire dataset is divided into three portions. The �rst
portion contains %60 of the dataset, and is assigned as train set, Xtrain. Both cross-validation and
test sets share the remaining %40 portion, equally. Thus, both Xcv and Xtest contain %20 portion
of the full data. Then, the hypothesis f̂(k, x;W ) is trained using training set Xtrain as explained in
the optimization part. The trained parameters θ are evaluated on the cross-validation set Xcv. Based
on the cross-validation error, design parameters such as learning rate Γ, regularization parameter γ,
order of initial uniformly distributed random weights, metaNet neuron dimensions, and BL-ReLU
parameters (α, β, λ) are tuned. Thereafter, the �nal tuned parameters are evaluated on the test set
Xtest to obtain the generalization error.

Di�erent from the literature, we apply BL-ReLU activation to the estimations with BL-ReLU param-
eters α = β = 1, and λ0 = 0.01. With this activation, we allow the metaNet to make errors
up to %1 percent. Implementation of such a tunnel approach improves the generalized success by
decreasing the over�t. In �gure 4, the notion behind the tunnel approach is illustrated. In physical

λ
0

Figure 4: Tunnel Design

sense, we allow the estimations to move freely within the tunnel, and do not force them to be exactly
equal to the measurements. This makes sense since the measurements themselves are not the ideal
states due to sensor noise. Then, the %1 error, can be related to the signal-to-noise ratio (SNR).
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SIMULATION RESULTS

The metaNet is implemented using MATLAB. Experiments were run on dataset explained in input
structure, and cross-validation and testing parts. Initially, the design parameters learning rate Γ,
regularization parameter γ, number of neurons, positive and negative slopes of activation function
α, β, order of initial weights, and the iteration number are set heuristically for the training purpose.
Then using cross-validation set, all the parameters are tuned one by one.

Since Neural Networks are very sensitive to initial weights, �rst the initialization of weights is con-
sidered. The NN weights are initialized by random numbers between [−1, 1]. With this initialization,
cost function diverged due to large gradients in itself. Because of this reason, we scaled the weight ini-
tializations with powers of number of training samples. As the scaling power increases cross-validation
error kept decreasing but training error showed small oscillatory behavior which can be explained by
randomness of initialization. Although smallest CV error is reached at power 0.7, 0.6 is taken as power
since the network starts diverging beyond the scaling power of 0.7. In �gure 5, the improvements
achieved with initial weight scaling is illustrated.
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Figure 5: Power

Secondly, the e�ects of slopes in the positive and negative region in BL-ReLU activation function are
investigated. In our physical problem, both positive and negative values of the system states and the
control inputs have the same importance. This is because the negative sign just induces the motion in
reverse direction. Therefore, we intuitively convinced ourselves that the slopes in positive and negative
region should be the same. Because of this notion, we add deadzone to the activation function to add
nonlinearity. Next, we veri�ed our intuitions and discussions on the slopes of arms of the BL-ReLU
activation function by tuning these parameters. Previously, we expressed our motivation on the arms
of the BL-ReLU which should have the same priority. Hence, during the tuning procedure, we take
the raio between these two slopes to inspect the e�ect of linearity and nonlinearity. Changing this
raio, the change of training error and cross-validation error are observed, and given in �gure 6.
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Figure 6: Slope Ratio
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After several trials, the number of neurons are chosen to be nnpitch = 32, nnroll = 16, nnyaw =
16, nnlong = 32, and nnlat = 32. These neuron numbers are determined considering the dimensions
of each channel. For instance, the pitch channel takes more inputs than the roll channel which makes
the pitch channel more prone to larger couplings. In order to handle these kind of couplings, the
number of neurons are related to the number of inputs for the corresponding layer.

From the �gure 6, it is concluded that the cross-validation error decreases but training error increases
as slope ratio approaches to 1. This behavior can be explained with over�tting. As we change slopes
in negative and positive regions with respect to each other, the nonlinearity of the NN model increases,
as well. That means the capacity of the NN model increases, and this makes our network more prone
to over�tting. In the end, both of the slopes are chosen to be the same, and the deadzone modi�cation
in BL-ReLU is considered su�cient to have nonlinear decision boundaries.

Next, the learning rate is taken into account. Initial learning rate is set to 4.10−4, then the behavior
of the cost function during iterations are observed. Since it showed oscillations during iterations,
learning rate decreased. This procedure is repeated until the optimum convergence rate of Γ = 10−4

is reached. For the total iteration number, we did the similar thing, as well. When the progress in the
cost function becomes smaller and smaller, we decided to break the iteration, and picked that value
for our number of iterations.

Finally, the regularization parameter is taken into account. As we employ regularization to the cost
function, we do not observe signi�cant improvements on the cross-validation error. In fact, this
implies that the NN model is not over�tting and works at the required level of capacity. Considering
the neuron number we have used in the NN model, and the activation function BL-ReLU, it makes
sense not to have both over�tting and under�tting. That is, the model is nonlinear having su�cient
capacity, not more than enough. However, depending on the future input data, model may experience
over�tting problem. So, we employ relatively small regularization to the cost function in order to stay
on the safe side.

The comparison of the trained model and the NN model on the test set is illustared in �gure 7.
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Figure 7: Comparison of Sample States (orange:NN Model, blue: Flight Test)

CONCLUSION

In this work, we introduce the Neural Network architecture with multiple semi-decoupled hidden layers
and the novel BL-ReLU activation function. We further emonstrated its performance using the novel
designed VTOL unmanned aircraft platform. Beside, we showed how using di�erent parameters in
the BL-ReLU activation function increases the capacity of model. NN model and the ight test data
is compared, and the result is pretty much satisfactory. As a future work for complete model of
VTOL aircraft, network should be trained with wider range ight regimes, and the optimization of the
network parameters should be carried accordingly.
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