DEVELOPMENT OF A TRAINING DEVICE FOR STUDENT PILOTS

Tamer Savas¹ and Tansu Filik² Anadolu University Eskisehir, Turkey

ABSTRACT

In this study, it is implemented a non-motion Flight Training and Test Device, named as FTTD, with the aim of introduction the cockpit environment for student pilots. It is intended to reduce costs and save time with the use of commercial of-the-shell (COTS) software and hardware in FTTD platform. Additionally, an airport where student pilots at Anadolu University generally perform flight missions is modelled similarly to the real world. Meanwhile, FTTD platform is tested by the instructor pilots in order to get feedbacks which help to improve the system. It is shown that such a low cost flight training devices would be useful in terms of cost and safety as well as learning with classroom based training.

INTRODUCTION

Simulation, as an educational tool, is the imitation of situations, behaviors, tasks or events which are present reality. Simulation is used for the purpose of research, analysis, validation, visualization and learning in the field of aviation, engineering and manufacture etc. [Lammers, 2007]. Simulation systems, which are mostly used in aviation, are divided into two categories as real-time simulations and fast-time simulations. Flight simulators which are set of simulation systems are mostly used by flight training and air traffic control training for minimizing risks of training and improving quality of training.

Flight Simulation Training Device (FSTD) is a particular example of the use of real-time simulation tool in the field of flight training. FSTD is defined as means a training device which include a full flight simulator (FFS), a flight training device (FTD), a flight navigation procedures trainer (FNPT) or a basic instrument training device (BITD) in the case of airplanes. The relation and types of these devices are shown in Figure 1 [EASA, 2012]. These training devices have a great contributions to aviation safety as well as financial benefits. These devices are essential training tools for the student pilots before, during and after real flight phase of training.

¹ GRA, PhD Student in Faculty of Aeronautics and Astronautics, tsavas@anadolu.edu.tr

² Asst. Prof. in Faculty of Engineering , tansufilik@anadolu.edu.tr

Flight training devices are, as a part of Flight Simulation Training Device (FSTD), used as an effective tool to improve quality of pilot training by Flight Training Organizations (FTO). Some of the significant advantages of the use of FSTD's are related to [Alerton, 2010; Ehest, 2013]:

- Safety,
- Cost-effectiveness,
- Environmentally-friendly,
- High availability etc.,

In sum, the use of training devices in flight training provides significant advantages in terms of cost and safety as well as progressive and pedagogical learning.

Figure 1: Types and Levels of FSTD

It is known that training devices in pilot training provide positive transfer of training [Koonence 1998; Dennis 1998; Cohen 2001; Macchiarella, 2005;]. Meanly, if a training device reflects how closer to real flight environment, the more skill, ability and knowledge can transfer for student pilots in real flight training. Therefore, flight training with low-fidelity devices can be more effective and provides high level of training transfer [Allerton, 2010; Noble,2002]. Training devices also aid student pilots in order to enhance their knowledge, skills and attitude in a safe environment. It is possible to create adverse or emergency events that cannot find the opportunity to experiment in a real flight. Hence, student pilots can be trained within training devices over and over with no time limitation and have a better chance to know the real aircraft used in flight.

Furthermore, commercial of-the-shell (COTS) hardware and software products are important factors to reduce initial costs and time while enhancing activities [Shutao, 2008]. Rapid development of technologies and COTS products on the market are enabled to implement specific and low cost training devices such as FTTD platform which is mainly used for Cessna 172. Cessna 172 is the most frequently used and main aircraft in initial phase of flight training for student pilots in order to fulfill the duties such as familiarization of flight missions, recognition of the cockpit elements etc.

In this study, it is implemented a non-motion Flight Training and Test Device, named as FTTD. The main aim of FTTD platform is formation an environment in order to introduce both cockpit and training area to student pilots. It is intended to reduce costs and save time with the use of COTS software and hardware in FTTD platform. FTTD platform is tested by the instructor pilots and get favorable feedbacks. The structure of the FTTD platform is described in the next part of this study.

FTTD SYSTEM STRUCTURE

FTTD formed for the purpose of getting advantages in terms of cost, time and safety is composed of hardware and software COTS components. FTTD is a platform that can be used for both flight training and research purposes. FTTD platform have two user positions: student pilot position and instructor pilot position. Instructor pilot position authorizes the instructor to a monitor and get feedback of student pilots. The scheme and implementation of FTTD platform are shown in Figure 2 and Figure 3 respectively.

Figure 2: Scheme of FTTD Platform

The hardware components of FTTD are chosen same exactly of Cessna 172 including rudder pedal, yoke, flap control, switch panel, throttle quadrant, trim wheel, fuel selector panel and other equipment.

Figure 3: FTTD Platform

The software component of FTTD is chosen as X-Plane due to certified by Federal Aviation Administration (FAA). X-Plane commercial and open source simulation program used widely in academia and industry. The reason of the popularity use of X-plane is the flight model known as Blade Element Theory (BET) which providing accurate models for many types of manned and unmanned vehicles [Bittar, 2015]. BET breaks the aircraft down into many piece of elements and then finds the forces of each element in many times per second. After all, these forces converted into required parameters that you permit to fly as shown in Figure 4 [X-plane, 2017]. In sum, the main properties of operation of X-plane is based on describing the geometric shape of any aircraft and predicts how that aircraft will fly by means of BET [Bittar, 2014]

Figure 4: Representation of Cessna 172 Aerodynamic Forces

X-Plane is a COTS product that permits the researcher to send and receive information via User Datagram Protocol (UDP) protocol. UDP is a protocol that provide faster data traffic than other protocols whereas it is not guarantee data packet. X-Plane includes 133 data sets that each are 41 bytes shown in Figure 5 [X-plane, 2017].

×			×
Data Set Data See Flight-Test		enable: 👿 internet 🛛 👿 disk file	graphical 🖌 cockpit display
	33 C C Starter timeout		
	34 C C engine power		
		72 derse roll spollers 1	100 Switches 3:AP/1-0il/HOD
			109 Switches 4:anti-ice
3 C C Speeds			110 Switches Stanti-Icertue
4 C Mach, VVI, G-load	38 C Prop RPM	75 dets: rudders	111 Switches 6:clutch/astab
	39 D D prop pitch	76 dels: yaw-brakes	112 🖸 🗍 🗍 switches /:misc
5 d atmosphere: weather	40 propwasn/jetwasn	// 🗆 🗖 🔄 control forces	
6 d atmosphere: aircraft	41 0 0 0 N1		113 annunciators: general
7	42 🗆 🗆 🗖 N2	78	114 🔄 🔄 🔄 annunciators: general
	43 0 0 0 MP	79	115 🗖 🗖 🗖 annunciators: engine
8 B B B joystick ail/elv/rud	44 🗖 🗖 🗖 🗖 EPR	80 B B B pitch cyclic disc tilts	
9 9 9 9 9 0 other flight controls	45 0 0 0 FF	81 81 81 81 roll cyclic disc tilts	116 d d autopilot arms
10 🗧 🗧 🗧 art stab ail/elv/rud	46 0 0 0 0 m	82 8 Pitch cyclic flapping	117
11 📄 📄 📄 flight con ail/elv/rud	47 🗄 🖶 🖶 EGT	83 📑 📑 📑 roll cyclic flapping	118 🔄 📄 📄 autopilot values
	48 🗄 🖶 🖶 CHT		
12 📄 📄 📄 wing sweep/thrust vect	49 🔂 🔂 🔂 oil pressure	84 🗄 🖶 🖶 grnd effect lift, wings	119 🗖 🗖 🗖 weapon status
13 🗹 🗖 🕅 🗹 trim/flap/slat/s-brakes	50 📄 📄 📄 oil temp	85 📄 📄 📄 grnd effect drag, wings	120 🗖 🗖 🗖 pressurization status
14 🗖 🗖 🗖 gear/brakes	51 📑 📑 📑 fuel pressure	86 📑 📑 📑 grnd effect wash, wings	121 🗖 🗖 🗖 APU/GPU status
	52 🛅 🗖 📑 generator amperage	87 📄 📄 📄 grnd effect lift, stabs	122 🗖 🗖 🗖 radar status
15 🗖 🗖 🗖 angular moments	53 📑 📑 📑 battery amperage	88 📄 📄 📄 grnd effect drag, stabs	123 🗖 🗖 🗖 hydraulic status
16 C C angular velocities	54 🗖 🗖 🗖 battery voltage	89 🗧 🗖 🗖 grnd effect wash, stabs	124 🗖 🗖 🗖 elec & solar status
17 17 pitch, roll, headings		90 🗧 🗖 🗖 grnd effect lift, props	125 C C I icing status 1
18 🗖 🗖 🗖 AoA, side-slip, paths	55 🖪 🗖 🗖 elec fuel pump on/off	91 🗧 🗖 🗖 grnd effect drag, props	126 🗖 🗖 🗖 icing status 2
19 19 1 mag compass	56 🗖 🗖 🗖 idle speed lo/hi		127 🗖 🗖 🗖 warning status
	57 57 57 57 57 57 57 57 57 57 57 57 57 5	92 8 8 8 9 wing lift	128
20 C C C I I I Iat, Ion, altitude	58 58 9 9 9 generator on/off	93 BBBB wing drag	
21 PPP loc, vel, dist traveled	59 PPP inverter on/off	94 PPP stab lift	129 E E F hardware options
	60 AAA FADEC on/off	95 PPP stab drag	130
22 PPP all planes: lat	61 AAAA igniter on/off		131
23 CONTRACT All planes: Ion		96 PPP COM 1/2 frequency	BBBB /
24 8 8 8 all planes: alt	62 BBBB fuel weights	97 BBBB NAV 1/2 frequency	132日日日日 climb stats
	63 CORP payload weights and CG	98 8 8 8 8 8 8 8 9 NAV 1/2 OBS	133 C C Cruise stats
25 PPP throttle command		99	L L Cocknit During Elight
26 BBBB throttle actual	64 BBBB aero forces	100 BBBB NAV 2 deflections	Graphical Display in 'Data See'
27 PPP feathr-norm-beta-revers	65 COR engine forces	101 C C C ADE 1/2 status	Internet via UDP
	66 BBBB landing gear vert force		666
	67		detail: Trotors UDP rate 5 0.0 /sec
30 BBBB carb beat setting	Cr C C C anong gen depoyment		detail: E propeilers
31 BBBB cowl flap setting	68 BBBB lift over dran & coeffe		detail: E wings dick rate 1000
32 BBBB magneto setting			detail: E stabs & misc
JA CI CI CI magneto setting	on CI CI CI high environcy		detuni. El stabs el misc

Figure 5: UDP Data Set of X-Plane

It is a significant factor for student pilots to feel real world environment in simulator training. For the purpose of enhancing the reality of training devices areas where student pilots generally perform flight missions at is modelled similarly to the real world shown is Figure 6 as an example.

Figure 6: LTBY - Eskisehir Hasan Polatkan Airport

CONCLUSION

In this study, it is implemented a non-motion Flight Training and Test Device, named as FTTD, with the aim of introduction the cockpit environment and training area to flight students. It is intended to reduce costs and save time with the use of commercial of-the-shell (COTS) software and hardware in FTTD platform. Development of the platform is done with the test and feedback are given by the instructor pilots at Anadolu University. As a conclusion it is noted by test and feedback of FTTD that a low cost flight training devices would be useful in terms of cost and safety as well as learning for classroom based training

References

- Allerton, D.J. (2010), *The Impact of Flight Simulation in Aerospace*, The Aeronautical Journal, Vol. 114. p: 747-756, Dec 2010.
- Bittar, A., Vitzilaios, N. I., Rutherford, M.J. and Valavanis, K.P (2015), *An Integrated Framework for Cooperative Ground and Aerial Vehicle Missions Utilizing Matlab and X-Plane*, 9th Annual IEEE Systems Conferences, p: 495-500, Canada, Apr 2015.
- Bittar, A., Figuereido, H. V., Guimaraes, P. A. and Mendes, A.C. (2014), *Guidance Softwarein-the-loop Simulation Using X-Plane and Simulink for UAVs*, International Conference on Unmanned Aircraft Systems (ICUAS), p: 993-1002, Orlando May 2014
- Cohen, J.B., Go, T.H and Longridge, T. (2001), *Flight Simulator Fidelity Considerations For Total Air Line Pilot Training and Evaluation*, AIAA Modelling and Simulation Technologies Conference and Exhibit. Aug 2001. Canada.
- Dennis, K.A. and Harris, D. (1998), *Computer-Based Simulation as an Adjunct to AB Initio Flight Training*, The International Journal of Aviation Psychology, Vol. 8, p: 261-276

- EASA (European Aviation Safety Agency), (2012) *Certification Specification for Aeroplane Flight Simulation Training Devices (CS-FSTD A),* Initial Issue, July 2012.
- EHEST (The European Helicopter Safety Team) (2013), Advantages of Simulation in helicopter Flight Training, July 9,2013
- Koonence, J. K. and Bramble, W.J. (1998) *Personal Computer-Based Flight Training Devices,* The International Journal of Aviation Psychology, Vol. 8, p: 277-292
- Lammers, R. L. (2007) *Simulation: The New Teaching Tool,* Annals of emergency Medicine, Vol. 49, p: 505-507
- Macchiarella, N. D. (2005) *High Fidelity Flight Training Devices In The Training Of Ab Initio Flight Students*, 24th Digital Avionics Systems Conference (DASC), Vol.1 p: 5-B, Nov 2005
- Noble, C. (2002) *The Relationship Between Fidelity and Learning In Aviation Training and Assessment*, Journal of Air Transportation, Vol. 7, p: 33-54, 2002.
- Shutao, Z., Jingfeng, H., Qitao, H. and Junwei, H. (2008) A Low-Cost PC-Based Flight Simulator Development, 2nd IEEE International Symposium on Systems and Control in Aerospace and Astronautics (ISSCAA), p: 1-5, Dec 2008

X-plane, (2017) www.x-plane.com, [Access Date: 15.01.2017]