### Interrelation of Multi-physical Phenomena in Composite Manufacturing Processes

### **Ismet Baran**

Chair of Production Technology Faculty of Engineering Technology

### Composites: freedom of design















2/60

### **Composites reliability**



Economic

Safety + Economic

Safety

#### Manufacturing quality is a critical issue for improved reliability.



### Composites in our life



2.6 TWh/year
= Electricity for 1.5 million people
CO<sub>2</sub> reduction 1.25 MT/year
= 270k cars off the road

Paris Climate Accord: limit global temperature rise to 2 °C

We need to ensure that blades endure minimum 20 years of service



### **Composite life line**





### Effect of defects





### Effect of defects

Unknown defects and their unknown effects can cause:



Unexpected catastrophic failure [1]

\$25 million downtime cost due
to a blade cracking
Suzlon US in 2010 [1]

Reduced blade life time

#### The costs of inaction are higher than the costs of action

[1] Sandia Report, SAND2011-1094, February 2011



Goal



Goal





### **Recent activities**

**Pultrusion:** Heat transfer, curing, solid mechanics

**Co-bonding/over infusion:** Interface bonding

Laser Assisted Tape Winding (placement): Laser optics, irradiation heat transfer

10/60









### Recent activities

### **Pultrusion:** Heat transfer, curing, solid mechanics

**Co-bonding/over infusion:** Interface bonding

Laser Assisted Tape Winding (Placement): Laser optics, irradiation heat transfer

11/60





In principle it is a simple process...





### **Pultruded profiles**



Baran. Pultrusion: State-of-the-art process models. Smithers Rapra. (2015)



### **Pultruded profiles**

#### Carbon/epoxy

# CFRP structural parts for vertical stabilizers



## CFRP upper deck floor beams s



#### UNIVERSITY OF TWENTE.



14/60

### **Example: Pultrusion process**

In principle it is a simple process...

#### In reality:





### Processing





### Challenges

#### Residual stresses, shape distortions and variation in properties



- Anisotropy
- Non-uniform shrinkage
- Through-thickness gradients
- Tool/part interaction





12x100 mm



### Micro-CT – internal structure



#### In preparation for publication



18/60

### Micro-CT – 3D porosity/crack



### Material characterization



20/60

### Numerical process modelling





21/60

### Shape deformations

#### Simulation of the pultrusion process: L-shaped profile



Baran et al. Composites Structures (2014)



### Shape deformations







5 mm

#### Glass/polyester (UD Vf = 55 %)

Baran. ESAFORM (2017)

















28/60









### Partial curing due to higher pulling speed Delamination during the process



Thickness 12 mm, width = 100 mm

In preparation for publication





Baran et al. Applied Composite Materials (2013)



#### Degree of cure at die exit



100 x 100 mm (glass polyester)

Pulling speed 100 mm/min

Baran. AMPCS (2016)

#### UNIVERSITY OF TWENTE.

32/60

#### Degree of cure at room temperature (part is cooled down)



100 x 100 mm (glass polyester)

Pulling speed 100 mm/min

Baran. AMPCS (2016)

**UNIVERSITY OF TWENTE.** 

33/60

#### Normal stress distribution

#### 50 % reduction in tensile stresses at center





Transverse shear stress distribution

70 % reduction in maximum transverse shear stress





**Pultrusion:** Heat transfer, curing, solid mechanics



Laser Assisted Tape Winding (Placement): Laser optics, irradiation heat transfer











## **Co-bonding challenges**



- Multiphysics
- Mechanics and constitutive behaviour of interface
- Load transfer at interface
- Bond quality & strength



### **Co-bonding warpage**

- Glass/polyester
- $[0]_{4s}$  prefab +  $[0]_{4s}$  over infused laminate
- 4.5 mm total thickness
- Curing at RT 30 hrs.





Baran, ECCM21 (2017)



### **Co-bonding warpage**

#### Thermo-chemical-mechanical process simulation Symmetry over infused laminate 2.25 mm 2.25 mm Rigid surface Prefab v 100 mm Shear layer at the interface U, U2 +4.196e-03 +3.844e-03 +3.492e-03 +3.140e-03 +2.788e-03 +2.436e-03 +2.084e-03 732e-03 +1+1.380e-03 +1.028e-03 +6.758e-04 +3.238e-04 2.830e-05

Baran, ECCM21 (2017)



## **Co-bonding warpage**

#### Warped geometry





**Pultrusion:** Heat transfer, curing, solid mechanics

**Co-bonding/over infusion:** Interface bonding

Laser Assisted Tape Winding (Placement): Laser optics, irradiation heat transfer







### Laser Assisted Tape Winding (LATW)





### LATW applications





# Risers for deep-sea oil/gas drilling

Automobile H<sub>2</sub> storage tank



### LATW processing challenges

#### Temperature?

- Too low:
  - Insufficient consolidation or intimate contact
- Too high:
  - Material degradation
  - Excessive deformation





### LATW process optimization/control







### Production Technology

47/60

### LATW process simulation tool



### LATW laser light reflection





### LATW non-specular reflection





### LATW optical model (non-specular reflection)

(1) Incident light ray

- (2) Piece of material, fibre orientation  $\hat{\mathbf{f}}$
- (3) Reflected light on screen
- (4) Reflected rays + absorption

Microfacet-based Bidirectional Reflectance Distribution Function (BRDF) with microfacet probability distribution:

$$p(\mathbf{\hat{h}}) = p(\theta, \phi) = \exp\left(-\tan^2\theta\left(\frac{\cos^2\phi}{2\sigma_f^2} + \frac{\sin^2\phi}{2\sigma_t^2}\right)\right)$$



In preparation for publication



### LATW optical model (non-specular reflection)



#### In preparation for publication



### LATW thermal model

- 1D transient heat transfer model
- 2D Lagrangian domain (BCs)
- 2D  $\rightarrow$  3D: row of *independent* domains (in transverse direction)





### LATW model results

#### Optical model output:

Normalized laser intensity



Thermal model output:



### LATW effect of geometry



Substrate curvature is important



Reichardt, Baran and Akkerman. *ECCM17* (2016) Zaami, Baran and Akkerman. *ESAFORM* (2017)



### LATW effect of fiber orientation



Fibre orientation is important

 140

 130

 120

 110

 0°
 45°
 90°

Substrate nip-point T [°C]



Tape nip-point T [°C]

Reichardt, Baran and Akkerman. ECCM17 (2016)

#### **UNIVERSITY OF TWENTE.**



56/60

### LATW tape widening





**Summary** 





Chair of production technology, University of Twente

Process Modelling Group, Technical University of Denmark

CMG group, KU Leuven



# Thank you for your attention!

**Pultrusion:** Heat transfer, curing, solid mechanics



Laser Assisted Tape Winding (Placement): Laser optics, irradiation heat transfer





