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Motivation and Objectives

• To develop a unified efficient approach for both smooth flows including 

complex flow features and  discontinuity capturing when using higher-order 

(P2 or higher) DG discretizations  in three-dimensional unstructured 

meshes 

• To allow capabilities of using large cells and high order accuracy both at 

discontinuities (with sub-cell discontinuity resolution)  and away from them 

in order to resolve smooth but complex flow features.

• To advance implicitly in time (using Newton-Krylov or space time FE 

methods) the full coupled system for compressible viscous flows, 

chemically reactive flows, and ionized gas plasma flows

• To apply and demonstrate potential benefits from dynamic h/p refinement 

for time dependent complex three dimensional flow problems.
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DG discretization
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• Use the same polynomial spaces for weighting and expansion functions 

• Weak form of the system
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• Use the LLF or Roe’s flux to evaluate the interface fluxes
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ERAU • Define the auxiliary variable                     for the gradient of the state vector
and discretize it in the same DG framework 
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• Use the LDG or the BR2 scheme to evaluate the numerical fluxes 

• For the current computations we used the LDG method 

• For arbitrary three dimensional meshes the BR2 scheme is more 

suitable because it yields more narrow stencils strictly confined to the 

immediate neighbors of an element 

DG discretization of the viscous terms



The map from arbitrary prismatic and tetrahedral 
elements in physical space to the standard 

computational space cubical element



Why make all this trouble for the DG  and not use FV with high 

resolution?

 DG has a compact stencil and does nor require information from  

neighboring  elements

 The compact stencil makes it particularly suitable for parallel 

processing with implicit or explicit time marching methods

 It is essentially a FE method therefore it well suited for h-,  p-,  

or h/p-refinement, also in space-time FE/DG discretization

 It is well suited for problems with smooth solutions  including 

complex features when high order expansions or p-type 

refinement is used

 It includes features from the FV methods that make possible 

capturing of strong discontinuities

 It does not require continuity of the solution at the element 

interface therefore application of adaptive mesh refinement  

(AMR) strategies with non-conforming elements (hanging nodes)  

becomes straight forward.

 It can naturally include high-order curved surface geometry 

(iso-geometric formulation)   

Because of some DG features not found in FD or FV



A p-adaptive numerical solution of a linear problem
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, are sclar coefficients that can be considered as Lagrange multipliersc  

To satisfy the constraints for the divergence of the magnetic  and electric fields , 

two new scalar potentials = (x, y, z, t) and = (x, y, z, t) are introduced   

B E



p-refined numerical solutions



Project the solution to the 

neighboring element

Compute the error and 

ensure that it is bellow

a prescribed tolerance

Application of p-adaptivity, P2 (blue), P3 (green), 

and P4 (red) for a prismatic nonuniform mesh.

Visualization of the the computed waves. The dashed line 

marks the border for the transition from P3 to P4

p-adapted numerical solution



Computed p-adaptive numerical solution 

for aircraft radar cross-section



TVB and TVD  limiting for discontinuity capturing

• To eliminate oscillations at strong discontinuities of both the flow field and 

the electromagnetic field variable the following TVB limiter is used  
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the parameter     is an estimation of second order derivative of  variable u 

and it is estimated by the Laplacian                     in the transformed space
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• The TVB limiter is applied to the characteristic variables of the flow field

• TVB Limiting is performed in the transformed canonical space of cubic elements 
to the characteristic variables and the limited variables are transferred back to the 
physical domain using collapsed coordinates

• Limiting is applied for all variable at the end of each RK stage

• TVD limiting can be applied in the physical space it is more diffusive than the TVB 
limiter and the computational cost is not very low
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Hierarchical Limiter

P1 Limiter

TVB and hierarchical limiters



Adaptive mesh refinement with P1+TVB limiter for enhanced 

resolution of discontinuities and complex flow features



Adaptive mesh refinement and parallel efficiency



Adaptive mesh refinement on discontinuities 

and smooth complex flow features



The dissipative filter for P1 or higher-order expansions
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Let LFx be the dissipative flux of the filter  operator along the x direction with 

similar definitions for LFy and LFz along the other directions



The filter dissipative fluxes 
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or it is evaluated based on the smothness of computed solution

and is evaluated as suggested by Yee
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Application of the filter in 1D for P1, P2, and P3 expansions
using information from neighboring elements



Application of the filter for quadrilateral elements



Application of the filter for triangular elements



Application of the filter in 1D for P1, P2, and P3 expansions 
with oversampling and information only from the element 



Higher order reconstruction would be 
required to avoid oversampling

• Use the hybridazable DG and reconstruct the 

numerical solution to one order higher (p to p+1) 

for the filter construction

• Use the recovered function (van Leer) to construct 

the filter operator

• Use higher order reconstruction within the element by 

projecting the recovered function to construct the filter 

operator  

Oversampling and least square projection is chosen



Application of the filter for a smooth 
problem computed with centered flux



Application of the filter for the Sod’s shock tube problem
Filter constructed using neighboring elements

200 elements h = 0.01



Filter operator projection with P4, h = 1/5
and in the cell discontinuity capturing  

 The Galerkin projection appears more oscillatory and affects the solution average (c0)

 Least square projection is less oscillatory and it does not require to modify the 

computed solution average in the spirit of TVB limiters 



Application of the filter for the Sod’s shock tube problem
sub-cell discontinuity capturing  filter in the element

P4 h = 1/5

P7 h = 1/15



Galerkin and least square projection of the filter
Sod problem P4 numerical solution

very coarse mesh with 10 elements h = 0.2

Oversampled solution 

within the cell 

Filter constructed from 

higher order reconstructed 

Hybridizable DG solution  



Application of the filter for the Sod’s shock tube problem
Filter constructed within the element

20 elements h = 0.1



Convergence rate for the Sod’s shock tube problem
filter operator from the element



Large pressure ratio shock tube problem
Filter constructed using neighboring elements

h = 1/200



Large pressure ratio shock tube problem
Filter constructed within the element

Filtered h = 1 / 40,  TVB hierarchical h = 1/400 
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Shu and Osher density perturbation shock interaction
using information from neighboring elements

400 cells



Shu and Osher density perturbation shock interaction
using information from the element



M=3, β=30 oblique shock reflection
Convergence to the design order of accuracy has been achieved



P4 numerical solution P2 surface elements 



Flow at M = 3 in a tunnel with a step 

P1 

Filtered

h = 1/80

P1

TVB limiter

H = 1/120 



Flow at M = 3 in a tunnel with a step 

P2 h = 1/ 50

P5 h = 1/ 50



Flow at M = 3 in a tunnel with a step 

P5 h = 1/ 50

P1 adaptive

h = 1/ 640 

at shocks and slip lines



Reflection of a M=2 shock from a wavy



Reflection of a M=2 shock from a wavy

Computed

density gradient

numerical schlieren

Experimental

sclieren



Reflection of a M=2 shock from a wavy wall  

density t = 350 s

density dradient



Transonic flow at M = 0.8, ONERA M6 wing
P1 numerical solution on fine hexahedral mesh



Transonic flow at M = 0.8, ONERA M6 wing
P1 numerical solution with AMR

initial surface and

field meshes

AMR of the 

surface mesh

AMR of the 

field mesh



ONERA M6 wing P1 solution at M = 0.8



ONERA M6 wing M = 0.8, P3 sub-cell shock capturing 



ONERA M6 wing P3 solution at M = 0.8



ONERA M6 wing M = 0.8, P4-P5 shock capturing 



h/p adaptivity for chemically reacting flow at M = 8



Chemically reacting flow at M = 8



Chemically reacting flow at M = 8



h/p adaptivity for chemically reacting flow at M = 8



Chemically reacting flow at M = 8



Chemically reacting flow at M = 8



Outlook for high order DG methods
 Application of p-adaptivity,  and AMR for smooth features and discontinuties 

was demonstrated

 A unified filtering approach for high order DG discretizations  in unstructured 
three-dimensional meshes was developed. Filtering is applied as a post 
processing stage and it is suitable for both implicit and explicit time marching

 Computationally intensive hierarchical limiting of higher order DG 
discretizations is not required and sub-cell discontinuity resolution is achieved. 
Benefits from filtering higher order expansions were found

 Combined dynamic h/p refinement can be applied for problems with 
discontinuities and embedded smooth but complex flow features to increase 
efficiency of DG discretizations without compromising numerical accuracy

 Furthered enhancements are expected from the isogeometric approach and 
its implementation to complex fluid structure interaction problems and other 
disciplines 


