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ABSTRACT 

In this paper a method for estimation of attitude of a rigid body by integration of kinematic equations is 
presented. Exponential coordinates are used to project kinematic equation of rigid body from highly 
nonlinear rotation group to three dimensional linear space enabling the possibility of applying simple 
numerical integration to compute the attitude. Data from accelerometer and magnetic sensors are 
used as a low frequency estimate of attitude, combined with integration results to control error, 
enabling long term real time computation. The stability of proposed algorithm is proven theoretically 
and demonstrated by numerical simulations. 
 

INTRODUCTION 

Estimation of orientation of a rigid body is the first essential step towards designing stabilizing 
controllers  in a wide range of applications such as robotics, UAV’s and underwater vehicles. Despite 
the fact that dynamic equations of attitude (which are in fact the equations of kinematic) without any 
uncertainty are determined, it is not feasible to apply numerical integration methods to extract attitude 
data from sensor measurements. Presence of all sorts of noise and unwanted data in the output of 
sensors combined with digitizing and round off noise and errors of discrete computations make it 
necessary to consider an error control mechanism to guarantee the correctness of estimation and 
robustness of real-time computations. Assuming certain kinds of statistical characteristics for noise 
and uncertainties, Kalman Filter based methods like EKF seek to minimize mean square of error to 
archive this goal. As an alternative, we have methods based on Wahba’s problem like the QUEST 
algorithm that use optimization methods to minimize a cost function and have the advantage of not 
being restricted to Gaussian noise. A survey of all nonlinear estimation methods can be found in [1]. 
Also there exists another completely different approach to the problem which does not use 
optimizations techniques explicitly, but instead tries to manipulate attitude estimation error dynamics 
using Lyaponov methods to ensure the convergence of error to zero from any initial conditions. This 
has the advantage that such an observer can suppress any kind of unwanted contamination without 
taking into account the nature of disturbance or noise (see [2],[3]). Other than contaminations there is 
another level of complexity associated with attitude estimation and that is the fact that attitude of rigid 
body evolves on a non-Euclidean space. The space of rotation matrices (3x3 orthogonal matrices with 
unit determinant or ܱܵሺ3ሻ) as natural representation of attitude, form a Lie group, meaning that it has 
geometric structure of a 3 dimensional manifold and algebraic structure of a group with matrix product. 
Consequently to apply numerical integration methods, in addition to kinematic equations one needs to 
consider a set of algebraic constraints to get the correct results so that the integration results remain a 
valid rotation matrix. This increases the amount of computations need to be done in real time at each 
step.  
 
A relatively new approach in numeric integration of differential equations on Lie groups (called Lie 
group methods) is to use the projection of differential equations to Lie algebra of Lie group which is a 
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linear space and this allows us to apply simple forward numerical integrations [4]. The natural map 
from Lie group to Lie algebra is the exponential map and in case of rotation matrices the matrix 
exponential of a skew symmetric matrix is an orthogonal matrix with unit determinant which is a 
rotation matrix. Conversely the inverse of exponential map (matrix logarithm) is well defined and 
smooth in the neighborhood of identity defining a chart of ܱܵሺ3ሻ, in other words the exponential map is 
a three-parameter representation of attitude [5].  
 
In this paper we use exponential coordinates to go from highly nonlinear space of rotations to linear 
space of three dimensional vectors (note that space of skew symmetric matrices is isomorphic to Թଷ). 
This transformation allows us to numerically integrate kinematic equations using measurements of 
angular velocities without considering any algebraic constraints. An estimate of attitude from 
accelerometer and magnetic sensors, incorporated in equations, in order to guarantee stability and 
robustness of numerical computations in presence all kinds of approximation errors and 
contaminations. After a review of mathematical preliminaries and defining proper terminology, we 
propose the differential equation of estimator and prove its stability of error dynamic. In final section 
numerical simulations demonstrating robustness of the proposed algorithm are included. 
 

MATHEMATICAL PRELIMINERIES 

Considering two ortho-normal frames as inertial and body-fixed frames, the orientation of rigid body 
can be determined uniquely by a rotation matrix ܴ in a way that if ࢜ is a vector in three dimensional 
space with ࢜௕ and ࢜௘ being its representations in body-fixed frame and inertial frame respectively we 
have:  
 

௘࢜ ൌ ܴ   ,  ௕ܴ࢜ א ܱܵሺ3ሻ  , ,௕࢜ ௘࢜ א Թଷ 
 
where ܱܵሺ3ሻ is the space of all 3x3 orthogonal matrices with unit determinant. The three columns of ܴ 
are three unit vectors of body fixed frame resolved in inertial frame. If rigid body is in continuous 
rotational motion in space, the rotation matrix becomes a function of time and the following equation 
expresses the kinematics of motion: 
 

ሶܴ ሺݐሻ ൌ ܴሺݐሻࢹൈ                  ሺ1ሻ 
 
In this equation ࢹ  and ࢹൈ are the angular velocity of rigid body in its vector and skew-symmetric 
matrix forms: 
 

ࢹ ൌ ቈ
ܽ
ܾ
ܿ

቉ ՞ ൈࢹ ൌ ൥
0 െܿ ܾ
ܿ 0 െܽ

െܾ ܽ 0
൩ 

 
We have Euler’s theorem, which states that every orientation of rigid body can be interpreted as a 
rotation around an eigenaxis collinear with unit vector ࢔ and an angle θ (eigenangle), with respect to 
inertial frame. We define the vector ࢘ to be collinear with ࢔ and length θ. The following relations hold 
[4]: 
 

ԡ࢘ԡ ൌ ߠ ൌ ଵିݏ݋ܿ 1
2

ሺݎݐሺܴሻ െ 1ሻ             ሺ2ሻ 
 

࢔ ൌ
1

ԡ࢘ԡ݊݅ݏ2 ൥
ܴଷଶ െ ܴଶଷ
ܴଵଷ െ ܴଷଵ
ܴଶଵ െ ܴଵଶ

൩                        ሺ3ሻ 

 
Note that ‘ݎݐ’ is the trace operator and ܴ௜௝ is the element of rotation matrix ܴ. The matrix exponential 
defined by infinite series allows us to make a link between the rotation matrix and vector ࢘: 
 

ܴ ൌ  ൈሻ                                                                   ሺ4ሻ࢘ሺ ݌ݔ݁
ܴ ൌ ܫ ൅ ݊݅ݏ ԡ࢘ԡ ൈ࢔ ൅ ሺ1 െ ൈ࢔ԡሻ࢘ԡݏ݋ܿ

૛                     ሺ5ሻ 
 
It has been proven that every open neighborhood of ܱܵሺ3ሻ can be mapped to Թଷ using ݁݌ݔ function. 
This defines a coordinate system on ܱܵሺ3ሻ called exponential coordinates. 
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The kinematic equation (1) in terms of ࢘ takes the following form: 
 

ሶ࢘ ൌ ࢹ ൅
1
2 ࢘ ൈ ࢹ ൅ ቆ

1
ԡ࢘ԡଶ െ

ԡ࢘ԡ݊݅ݏ
2ԡ࢘ԡሺ1 െ ԡሻቇ࢘ԡݏ݋ܿ ࢘ ൈ ሺ࢘ ൈ  ሻ         ሺ6ሻࢹ

 
A proof of the above relation is presented in the appendix. The right hand side of this equation has a 
singularity at ԡ࢘ԡ ൌ  which is expected, because singularity-free representation of ܱܵሺ3ሻ with three ߨ2
parameters is not possible. It is also proven that there exists at least one ࢘ vector (one skew-
symmetric matrix ࢘ൈ) with ԡ࢘ԡ ൑  ,for every point on ܱܵሺ3ሻ (see [8] for proof). It means that ,ߨ
restriction of (6) to ԡ࢘ԡ ൑  .is the non-unique expression of kinematic without singularity ߨ
To compute the ܴ matrix one needs to integrate (1), which is a differential equation on ܱܵሺ3ሻ. This 
requires numerical integration of the differential equations together with the algebraic equations 
defining ܱܵሺ3ሻ. Solving the system of DAE’s (Differential Algebraic Equations) requires iterative 
methods which can be demanding in terms of computational power. Alternatively we propose to 
integrate (6) which is a differential equation on Թଷ. By writing kinematic equation in the form of (6) we 
actually turn the original problem which evolves on a nonlinear space to a problem in a linear space. 
This allows us to extract attitude from sensor data by using a simple numerical integration method with 
a sufficiently small time step and a mechanism to keep the error under control. 
 

LOW FREQUENCY ESTIMATE OF ATTITUDE 

A set of three-axis magnetometers and three-axis accelerometers fixed in rigid body’s centre of 
gravity, can be used to determine orientation of body-fixed frame with respect to inertial frame.  

 
If we consider the North-East-Down frame as the inertial frame, when there are no linear accelerations 
the three accelerometers read the vector of earth’s gravity resolved in body frame and divided by its 
norm they provide the 3rd column of rotation matrix ܴ. The same way, the normalized vector of 
magnetometers readings is nothing but the first column of rotation matrix and finally the 2nd column is 
the cross product of first and 3rd columns knowing that both frames have the same orientation. There 
are two problems with this measurement of attitude. First problem arises from the fact that 
accelerometers actually measure the total linear acceleration. It means that if we are in an accelerated 
motion other than components of gravity accelerations, linear accelerations are also included in 
readings and this causes a deviation of inertial frame from its assumed orientation. In addition 
magnetometers are noisy devices and presence of metallic objects can cause severe distortion in their 
output. This is a kind of noise that might have non-Gaussian properties making it difficult to remove 
using Kalman filter and similar techniques. 
 
Consequently accelerometer and magnetometer measurements provide a low frequency estimate of 
attitude which is not reliable in many cases. On the other hand the angular velocity readings from 
gyroscopes can be used for real time integration of kinematic equations, but they have their own 
problems like growing total error caused by digitization and other measurement errors. To solve the 
problem we use low frequency estimates to compute a correction term added to the kinematic 
equations to guarantee robustness and stability of numerical computations. 
 

Earth’s Gravity 

 ௫್ࢍ ௬್ࢍ ௭್ࢍ

Figure 1: Gravity Acceleration, Measured by Three Accelerometers Fixed in Body frame 
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MODIFIED KINEMATIC EQUATIONS 

Suppose we have ࢘ො as an estimate of ࢘. Equation (6) describes dynamic of ࢘ resulted from angular 
velocity. It is reasonable to see the deviation of ࢘ො from ࢘ as result of an additive term ࢹ௘ሺ࢘ො,  ሻ in࢘
angular velocity vector ࢹ. With this assumption we propose the following dynamics for ࢘ො: 

ොሶ࢘ ൌ ࢹ ൅ ௘ࢹ ൅
1
2 ࢘ ൈ ሺࢹ ൅ ௘ሻࢹ ൅ ቆ

1
ԡ࢘ԡଶ െ

ԡ࢘ԡ݊݅ݏ
2ԡ࢘ԡሺ1 െ ԡሻቇ࢘ԡݏ݋ܿ ࢘ ൈ ൫࢘ ൈ ሺࢹ ൅  ௘ሻ൯         ሺ7ሻࢹ

 
Note that ࢹ௘ is a function of ࢘ො which makes the right hand side of (7) a function of ࢘ො. Defining error 
vector ൌ ො࢘ െ  :௘ࢹ we propose the following term for , ࢘
 

ෝ,࢘௘ሺࢹ ሻ࢘ ൌ െ݇
ԡ࢘ԡ݊݅ݏ

ԡ࢘ԡ  ሺ8ሻ                       ࢋ

 
Which ݇ ൐ 0 is a design parameter. Subtracting (6) from (7) results in the following error dynamics: 

ሶࢋ ൌ െ݇
ԡ࢘ԡ݊݅ݏ

ԡ࢘ԡ ൭ࢋ ൅
1
2 ࢘ ൈ ࢋ ൅ ቆ

1
ԡ࢘ԡଶ െ

ԡ࢘ԡ݊݅ݏ
2ԡ࢘ԡሺ1 െ ԡሻቇ࢘ԡݏ݋ܿ ࢘ ൈ ሺ࢘ ൈ         ሻ൱      ሺ9ሻࢋ

 
Now we prove that this error dynamic is always convergent to zero. Inner product of both sides of (9) 
with ࢋ gives:  
 

݀ԡࢋԡ
ݐ݀ ൌ െ݇ԡࢋԡ

ԡ࢘ԡ݊݅ݏ
ԡ࢘ԡ ൭1 െ ቆ1 െ

ԡ࢘ԡ ݊݅ݏԡ࢘ԡ
2ሺ1 െ ԡሻቇ࢘ԡݏ݋ܿ ቆ1 െ

ࢋ| · ૛|࢘

ԡࢋԡ૛ԡ࢘ԡ૛ቇ൱ 

 
The following inequalities hold for ԡ࢘ԡ ൑  :ߨ
 

1 ൒
ࢋ| · ૛|࢘

ԡࢋԡ૛ԡ࢘ԡ૛ ൒ 0   , 1 ൒
ԡ࢘ԡ ݊݅ݏԡ࢘ԡ

2ሺ1 െ ԡሻ࢘ԡݏ݋ܿ ൒ 0  , 1 ൒  
ԡ࢘ԡ݊݅ݏ

ԡ࢘ԡ ൒ 0 

So we have: 
݀ԡࢋԡ

ݐ݀ ൑ 0 

   
This establishes the fact that the error is non-increasing and exponentially convergent for ԡ࢘ԡ ്  In .ߨ
the other words if we integrate equation (7) instead of (6), in practice the error between estimated 
value and real value always converges to zero. 
As an alternative way of considering the estimation problem, observe that equation (6) is linear in ࢹ. 
Now if we consider an additive term like ࢹ௘ሺ࢘ො,  :ሻ, equation (7) takes the following form࢘

ොሶ࢘ ൌ ሶ࢘ ൅ ,ො࢘ሺ࣌  ሻ࢘
 
By choosing a proper term for ࣌ሺ࢘ො,  ௘ in (8)ࢹ like ࣌ ሻ we can guarantee the stability. For example a࢘
gives a convergent error dynamics. 
 
The final question is, how we can know the value of ࢘ while that is the value we want to estimate. The 
answer is the low frequency estimate of ࢘ which we indicate with ࢘௠ and its associated rotation matrix 
with ܴ௠. But calculating ࢘ might cause problems during numerical computations because we need to 
normalize a vector with a constantly changing norm which can be zero. To avoid this we use equation 
(3), so (8) takes the following form: 
 

ෝ,࢘௘ሺࢹ ሻ࢘ ൌ ݇ ቌ
1
2 ቎

ܴ௠ଷଶ െ ܴ௠ଶଷ
ܴ௠ଵଷ െ ܴ௠ଷଵ
ܴ௠ଶଵ െ ܴ௠ଵଶ

቏ െ
ԡ࢓࢘ԡ݊݅ݏ

ԡ࢓࢘ԡ  ොቍ     ሺ10ሻ࢘
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But we still need ࢘ for computing ࢘ො from (7). This time we can use its estimate, ࢘ො. The following 
diagram is the visual representation of the theory developed in this work. 

 
Figure 2: Block diagram of proposed algorithm for attitude estimation 

 
NUMERICAL SIMULATIONS 

We used SIMULINK for a numerical simulation of the estimator we developed. A model of rigid body 
exists in SIMULINK standard libraries is used to simulate a rigid body. Outputs of this model are fed to 
the SIMULINK implementation of our algorithm. We considered a rigid body with J=diag([0.1,0.2,0.3]) 
and the we set ݇ ൌ 10. The following graphs are simulation results of an attitude command of a full 
yaw turn and then 70 degrees yaw followed roll and pitch commands.  

 
Figure 3: Tracking of attitude by proposed algorithm indicated by numerical simulation 
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ሾڭሿ 

ൈ 

ܴ௠

ԡ࢘௠ԡ

Accelerometer 

Magnetometer 

݇ ቌ
1
2 ቎

ܴ௠ଷଶ െ ܴ௠ଶଷ
ܴ௠ଵଷ െ ܴ௠ଷଵ
ܴ௠ଶଵ െ ܴ௠ଵଶ

቏ െ
ԡ࢓࢘ԡ݊݅ݏ

ԡ࢓࢘ԡ  ොቍ࢘

ොሶ࢘ ൌ ሺࢹ ൅ ௘ሻࢹ ൅
1
2 ࢘ ൈ ሺࢹ ൅ ௘ሻࢹ ൅ ቆ

1
ԡ࢘ԡଶ െ

ԡ࢘ԡ݊݅ݏ
2ԡ࢘ԡሺ1 െ ԡሻቇ࢘ԡݏ݋ܿ ࢘ ൈ ൫࢘ ൈ ሺࢹ ൅  ௘ሻ൯ࢹ

ଵିݏ݋ܿ 1
2

ሺݎݐሺܴሻ െ 1ሻ 

ො࢘  

 ௘ࢹ

Gyroscope  
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CONCLUSIONS AND FUTURE WORK 

A method for numerical integration of modified kinematic equations of a rigid body for the purpose of 
estimation of attitude is presented.  Low frequency measurements obtained from three axes 
accelerometers and magnetometers are used to prevent accumulation of attitude error that would 
normally occur when gyroscope measurements are directly integrated. Stability of attitude error 
dynamics is proven. Numerical simulations prove a good tracking of rigid body attitude.  In our future 
research we plan to use a forward integration shceme and optimize the code to save computational 
power for real time hardware. We also intend to use the method to estimate the attitude of a quadrotor 
UAV. 
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APPENDIX 
 

In this appendix we derive the kinematic equations expressed in exponential coordinates.  
We start by differentiating equation (4): 
 

ܴ ൌ ൈሻ࢘ሺ݌ݔ݁  ֜  ሶܴ ൌ
݀
ݐ݀ ൈሻ࢘ሺ݌ݔ݁ ൌ ൈሻ࢘ሺ݌ݔ݁

1 െ ൈሻ࢘ሺܽ݀ି ݌ݔ݁
ൈ࢘݀ܽ

ൈ࢘݀

ݐ݀ ൌ ܴ
1 െ ൈሻ࢘ሺܽ݀ି ݌ݔ݁

ൈ࢘݀ܽ

ൈ࢘݀

ݐ݀  

  
Where ܽ݀௑ܻ ൌ ܻܺ െ ܻܺ defined for any two square matrices. Using equation (1) we have the 
following: 
 

1 െ ൈሻ࢘ሺܽ݀ି ݌ݔ݁
ൈ࢘݀ܽ

ൈ࢘݀

ݐ݀ ൌ ൈࢹ  ֜  
ൈ࢘݀

ݐ݀ ൌ
ൈ࢘ି݀ܽ

ൈ൯࢘൫ܽ݀ି݌ݔ݁ െ 1
 ൈࢹ

 
Just like function  

௫
௘ೣିଵ

 the right hand side of above can be expanded: 
 

ൈ࢘ି݀ܽ

ൈ൯࢘൫ܽ݀ି݌ݔ݁ െ 1
ൌ ෍

1
݇! ௞ܤ

ஶ

௞ୀ଴

ൈ࢘ି݀ܽ
௞ ൌ ൈ࢘଴ܽ݀ିܤ

଴ ൅ ൈ࢘ଵܽ݀ିܤ
ଵ ൅ ෍

1
ሺ2݊ሻ! ଶ௡ܤ

ஶ

௡ୀଵ

ൈ࢘ି݀ܽ
ଶ௡  

 
ଵܤ ௞’s are Bernoulli numbers and the only one of them which is not zero for an odd ݇ isܤ ൌ െ ଵ

ଶ
. Using 

induction the following can be proven: 
 

ൈ࢘ି݀ܽ
ଶ௡ ൌ ሺ݅ԡ࢘ԡሻଶ௡ିଶܽ݀ି࢘ൈ

ଶ  
 
so we have the following: 
 

෍
1

ሺ2݊ሻ! ଶ௡ܤ

ஶ

௡ୀଵ

ൈ࢘ି݀ܽ
ଶ௡ ൌ ෍

1
ሺ2݊ሻ! ଶ௡ܤ

ஶ

௡ୀଵ

ሺ݅ԡ࢘ԡሻଶ௡ିଶܽ݀ି࢘ൈ
ଶ ൌ

െ1
ԡ࢘ԡଶ ෍

1
ሺ2݊ሻ! ଶ௡ܤ

ஶ

௡ୀଵ

ሺ݅ԡ࢘ԡሻଶ௡ܽ݀ି࢘ൈ
ଶ  

ൌ
1

ԡ࢘ԡଶ ൭1 െ ෍
1

ሺ2݊ሻ! ଶ௡ܤ

ஶ

௡ୀ଴

ሺ݅ԡ࢘ԡሻଶ௡൱ ൈ࢘ି݀ܽ
ଶ ൌ

1
ԡ࢘ԡଶ ቌ1 െ ܴ݁ ൭෍

1
݇! ௞ܤ

ஶ

௞ୀ଴

ሺ݅ԡ࢘ԡሻ௞൱ቍ ൈ࢘ି݀ܽ
ଶ  

ൌ
1

ԡ࢘ԡଶ ൭1 െ ܴ݁ ቆ
݅ԡ࢘ԡ

ԡሻ࢘ሺ݅ԡ݌ݔ݁ െ 1ቇ൱ ൈ࢘ି݀ܽ
ଶ ൌ ቆ

1
ԡ࢘ԡଶ െ

ԡ࢘ԡ ݊݅ݏ
2ԡ࢘ԡሺ1 െ ԡሻቇ࢘ԡݏ݋ܿ ൈ࢘ି݀ܽ

ଶ  

 
We can put all above together in following form: 
 

ൈ࢘݀

ݐ݀ ൌ ൈ࢘ି݀ܽ
଴ ൈࢹ െ

1
2 ൈ࢘ି݀ܽ

ଵ ൈࢹ ൅ ቆ
1

ԡ࢘ԡଶ െ
ԡ࢘ԡ ݊݅ݏ

2ԡ࢘ԡሺ1 െ ԡሻቇ࢘ԡݏ݋ܿ ൈ࢘ି݀ܽ
ଶ  ൈࢹ

 
This equation is on the skew-symmetric matrices. From the isomorphism of skew-symmetric matrices 
and three dimensional vectors and equivalence of ܽ݀ operator for skew-symmetric matrices with cross 
product for three dimensional vectors have the result: 
 
 

࢘݀
ݐ݀ ൌ ࢹ ൅

1
2 ࢘ ൈ ࢹ ൅ ቆ

1
ԡ࢘ԡଶ െ

ԡ࢘ԡ ݊݅ݏ
2ԡ࢘ԡሺ1 െ ԡሻቇ࢘ԡݏ݋ܿ ࢘ ൈ ሺ࢘ ൈ  ሻࢹ

 
 
 
 


