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DEVELOPMENT OF AN AEROSERVOELASTIC MATHEMATICAL MODEL OF A 
MISSILE CONTROL FIN 

 

ABSTRACT 

 

In this study, the derivation of a mathematical model of a missile control fin aeroservoelastic system, is 
performed. The structural, aerodynamic and servo-actuation system model parameters obtained in a 
separate study are implemented to the aeroservoelastic mathematical model, and the aeroservoelastic 
system is analyzed both in frequency and time domain. To provide genericity, structural mathematical 
modeling is performed on finite element modeling basis. Aerodynamic mathematical modeling of the 
missile control fin is based on ''Generalized Aerodynamic Force'' (GAF) matrix generation, whose 
values can be obtained by panel discretization based finite element methods or more advanced 3D 
CFD methods. A rational function approximation formulation of the GAF matrices is presented, in 
order to be able to represent the aerodynamic forces in the continuous frequency domain. Both the 
elastic and rigid body motion of the missile control fin are modeled by modal discretization, so that the 
interaction between the aeroelastic system and the control system dynamics could be studied. The 
inertial and aerodynamic coupling between the rigid body and elastic motion due to control actuation 
are formulated. A PD controller is augmented to the aeroservoelastic system, to simulate the 
behaviour of the overall system in response to various control commands. 

 

INTRODUCTION 

 
Aeroservoelasticity studies the interaction between aerodynamic, inertial, elastic and control forces 
that act on an aircraft. The interaction between control dynamics and aeroelastic properties of an 
aircraft naturally inherits transient dynamics, therefore aeroservoelasticity is a topic of dynamic 
aeroelasticity. Steady and unsteady effects on the structure are studied, since both interact with 
control system dynamics. The structure being analyzed may be a single control surface or a full 
aircraft with control surfaces.  
 
The structural dynamics, aerodynamics and the actuator dynamics have long been represented by 
linear models, rendering possible the analysis of the aeroservoelastic system in the frequency 
domain[Karpel, M., 1982]. The structural dynamics of all movable control surfaces with linear structural 
properties is commonly modeled utilizing the finite element method, putting forward modal 
discretization to account for both the rigid body and the flexible motion[Karpel, M., and Sheena, Z., 
1989]. Together with the finite element formulation of the structural dynamics, the Doublet Lattice 
Method [Albano, E., and Rodden, W. P., 1969] of aerodynamics has been used for carrying out flutter 
analysis and obtaining the Generalized Aerodynamic Force (GAF) matrices at discrete reduced 
frequencies. These GAF matrices are then input to a Rational Function Approximation (RFA) method 
such as Roger’s RFA [Roger, K. L., 1977] to obtain continuous frequency domain representation of 
aerodynamics over a specified frequency range as a function of the Laplace variable ‘s’. The inverse 
Laplace transform of the continuous frequency domain representation renders possible the time 
domain analysis of the aeroservoelastic system. 
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The present study presents a generic aeroservoelastic model, that renders possible the important 
physical phenomena involved in the aeroservoelastic motion to be studied. To provide genericity in 
structural modeling, the finite element formulation of structural dynamics is utilized. Aerodynamic 
modeling is handled with intermediate complexity, by utilizing a panel discretization method, The 
Doublet Lattice Method (DLM) of subsonic flow. The Generalized Aerodynamic Force matrices 
obtained are fitted for a range of reduced frequencies with Roger’s RFA method, so that the pure 
oscillatory aerodynamic forces can be represented in the time domain. The aerodynamic and 
structural matrices are integrated, also by accounting for rigid body motion, through a procedure which 
is well documented by Karpel [Karpel, M., 1990]. The formulation allowed the state space 
representation of the dynamics of aeroservoselasticity. Frequency domain and time domain analyses 
are performed with the aeroservoelastic model, in order to deduce the model fidelity achieved. The 
scope of the analysis is expanded to linear analysis, power limited nonlinear analysis, stability analysis 
with different feedback paths and performance analysis with regard to performance requirements of 
the servoactuation system.  
 

MATHEMATICAL MODELING 

 

The Aeroelastic Model 
In aircraft structural dynamics analysis, modal reduction is usually employed to reduce the problem 
size. The physical motivation behind the reduction process is that, in general a relatively narrow 
frequency range of interest dominates the dynamics of the structure. Through a proper selection of a 
number of low frequency structural modes, it is possible to capture the dominant dynamics of a 
structure and reduce the problem size. For the cases where an independent external forcing is also 
involved, the frequency content of the external forcing agents should be taken into account. Equations 
(1) and (2) represent the equation of motion of the missile control fin with respect to modal coordinates 

m ,  in time domain and Laplace domain respectively. 

 

           ( ) ( ) ( ) F ( )mm m mm m mm m m m m mt t t , , ,t       M C K  (1) 

 

          2 ( ) F ( )mm mm mm m ms s s s  M C K  (2) 

 

Where 
mmM , 

mmC  and 
mmK  are the reduced modal mass, damping and stiffness matrices 

respectively, and F ( )m m m m, , ,t    is the vector of external forces at modal coordinates. Equation (2) 

can be rewritten, by expressing the aeroelastic system at the left hand side, and the external control 
force applied by the actuator at the right hand side of Equation (3). 
 

          2 [ ( , )] ( ) ( )mm mm mm mm m acts s q M s s T s   M C K Q  (3) 

 

where q is the dynamic pressure, ( )actT s  is the moment applied by the actuator to the fin and mmQ  is 

the reduced modal aeredynamic forcing matrix. The modeshape matrix 
am  is partitioned into rigid 

body and flexible modal coordinates  am ac as   , where 
ac  is the rigid body mode column vector, 

and 
as is the modeshape matrix that includes elastic modeshapes as column vectors. Then Equation 

(3) is partitioned to obtain Equation (4). 
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           
              
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Equation (4) can be rewritten in two equation sets as follows :  
 

    2 2( ) ( ) ( )cs cs s cc cc c fins q s s q s T s    M Q M Q  (5) 
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    2 2( ) ( ) 0ss ss ss ss s sc sc cs s q s s q s      M C K Q M Q  (6) 

 
In Eqn.(5), the coupling between rigid body dynamics with aeroelastic dynamics is introduced by the 

inertial and the aerodynamic coupling on ( )s s ,which is the elastic modal coordinate vector. In 

Eqn.(6), the coupling between rigid body dynamics with aeroelastic dynamics is introduced by inertial 

and aerodynamic coupling on ( )c s , the rigid body modal coordinate, which is the actuator output 

( )fin s . The total hinge moment acting on the transmission unit output shaft, including the 

aerodynamic and the inertial components is given by Eqn (7). 
 

 @ ( ) ( )hinge fin finT s T s   (7) 

 
The aerodynamic force matrices in Eqns. (5) and Eqn. (6) are obtained from Roger’s RFA utilizing 
Eqn. (8), where the relation between the reduced frequency and the Laplace variable is taken as 

sbik
U

 . In Eqn. (8), 
0... 2NA  are the constant matrices to be determined from least square 

approximation for the best fit of ( , )M sQ , which is obtained using the DLM. In Eqn. (8), 
n  are the 

aerodynamic lag roots which are preset to specific values in the frequency range of interest, so that 
the aerodynamic lag functions are stable, the least square problem becomes linear, and the fit is 
satisfactory.  
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b
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Aeroelastic matrices given below are defined for subsequent use.  In the definition of the aeroelastic 

matrices, all coefficients
0... 2NA are obtained from Roger’s RFA. 
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Two types of aerodynamic lag states are defined so that a state space formulation for the solution of 

( )s s  could be constructed. The aeroelastic hinge moment lag state is given by Eqn. (9), which is 

used for constructing the hinge moment as an output of the state space aeroelastic system model. 
The lag state for the aeroelastic equation of motion is given in Eqn. (10). 
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s s
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Then, the state space formulation of the aeroelastic system augmented with hinge moment lag 

states is obtained as in Eqn. (11). 
 

      ( ) ( ) ( )sys sysz t z t u t       A B  (11) 
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The system and input matrices are expressed as: 
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where zeros and I ’s represent zero and identity matrices, z is  the vector representing the states 
including the aerodynamic lag states, and u is the vector representing the control input. 
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In the relations given above, 
sD  is composed of N identity matrices of size equal to the number of 

elastic modal coordinates. The output of the aeroelastic state space system model is formulated, so 
that the actual displacements at global coordinates, and the hinge moment acting on the fin is 
calculated. In order to obtain global displacements, modal superposition is used as in Eqn. (12).  
 

      ( ) ( ) ( )as s ac cx t t t      (12) 

 
Hinge moment is expressed in terms of states z  and inputs u by Eqn.(13) 

 

 @ @ @( ) ( ) ( )state input

hinge fin hinge fin hinge finT s T s T s   (13) 

 
where 

  2

@ ( ) ( ) ( )state l

hinge fin cs cs cs cs sT s s s qx s s    M C K  (14) 

 

  2

@ ( ) ( ) ( )input l

hinge fin cc cc cc cc cT s s s qx s s    M C K  (15) 
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where cc, cs, sc and ss sets of ( )lx s is given by 2

1
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A
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Formulating Eqn. (14) and Eqn. (15) in state space form, the hinge moment is formulated as an output 
in Eqn. (16). 
 

    @ @ @( ) ( ) ( )hinge fin hinge fin hinge finT t z t u t       C D  (16) 

 
The output matrix and the direct transition matrix are defined in Eqn. (17) and Eqn. (18), 
 

 
1

@ 0 0hinge fin cs cs c cs ss ss ss sq q          C K -C D M M K C D  (17) 

 

 
1

@hinge fin cc cc cc cs ss sc sc sc

          D K -C M M M K C M  (18) 

 

where 
cD  is an N size row vector composed of 1’s. Eqn. (11), Eqn. (12) and Eqn. (16) form the state 

space aeroelastic system model together with its outputs as displacements in global coordinates and 
total hinge moment around the fin. All the aeroelastic matrices presented in the formulation are 
obtained by normal modes and flutter analysis carried out in MSC Nastran. Further detail on how the 
aeroelastic matrices are obtained, is included in [Nalcı, O., Kayran, A., 2013]. 
 

The Control System Model 
Hydraulic, pneumatic and electromechanical servo actuation systems have distinctive dynamic 
characteristics, which will make the response of the aeroservoelastic system differ in terms of both 
stability and performance. An electromechanical servo-actuator system model is integrated to the 
aeroelastic system in this work, to study the aeroservoelastic dynamics. The electromechanical servo-
actuation system is made up of a DC Motor, a transmission unit and a PD Controller. In Figure 1, a 
generic block diagram of a servo-actuation system is shown. 
 

 

Figure 1 Block Diagram of the Servo-Actuation System 

 
Linear transfer functions for the servo-actuation system are presented in this section. These transfer 
functions are used for Root Locus [Evans, W. R.,1948] design of the PD controller. Nonlinear 
parameters such as dry friction and free play in mechanical linkages are neglected. On the other hand, 
the effect of the power limit nonlinearity of the DC Motor is modeled in MATLAB Simulink. 
 
In aerospace applications, especially in missile system design, the size of the servo-actuation system 
is constrained by packaging requirements of the missile. These constraints are commonly reflected on 
the servo-actuation unit by limiting its diameter and length, and the placement in the missile. On the 
other hand, significant aerodynamic hinge moments on the control surfaces have to be tolerated and 
the performance of the servo-actuation system should be sustained in a vast range of flight conditions. 
Therefore a gearbox with a specific speed reduction ratio is commonly used to provide the necessary 
torque to actuate the fin without performance degradation. In addition, because of the cylindrical 
shape of the DC Motors used, they are commonly placed in the missile so that the rotational motion of 
the motor output shaft is parallel to the missile’s longitudinal axis, as shown in Figure 2. Therefore 
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there is a need for transmitting the rotational motion of the motor output shaft onto the axis of rotation 
of the control surface. A transmission unit with speed reduction is commonly used for this purpose. 
 

 

Figure 2 Common Actuator Placement in Missiles 

 
In this study, a combined transmission unit with a specific speed reduction ratio and efficiency is 
modeled by Eqn. (19) to Eqn. (21): 
 

 m fin trN   (19) 

 @ @ 2
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total motor rotor gear motor
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J
J J J

N 
    (20) 
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@
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T
T

N 
  (21) 

 
where the parameters in Eqn. (19) to Eqn. (21) are defined as: 
 

2

2

@

@

: Rotor Inertia (kg.m ) : Angular Position of Motor Shaft
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rotorJ  and @gear motorJ are obtained from the motor catalog and finJ  is obtained from the MSC PATRAN 

finite element model. 
 
Dynamic characteristics of a DC Motor are often given in motor catalogs in terms of constant 
parameters. As long as the DC Motor is used according to the operating conditions that are specified 
in the catalog such as nominal voltage and max load torque, these parameters are valid for the 
motor’s entire lifecycle. The parameters are listed below:   
 

: NominalVoltage(Volts) : ArmatureResistance (Ohms)

: Torque Constant (N.m / Amperes) : AramatureInductance (Henries)

K : Back EMF constant (Volts.s / radians) : Viscous Damping Coefficient (N.m.s/radians)

t

b

V R

K L

c

 

 
When the fin and the transmission units are assumed to be rigid, the output of the transmission unit is 
equivalent to the output of the fin. Eqn. (22) describes the transfer function between the voltage input 
of the DC motor and the angular deflection of the fin. 
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When a PD controller is cascaded to the actuator transfer function given in Eqn. (22), a unity feedback 
closed loop system is formed as shown in Figure 1. Sensor dynamics and error characteristics are 
neglected, as if the angular position of the fin shaft is perfectly known. Transfer function of a PD 
controller is given in Eqn. (23). 
 

 ( )PD P DG s K K s   (23) 

 
The resulting unity feedback closed loop transfer function is given in Eqn. (24). 
 

 
    3 2

@

fin D t P t

com total motor b t t D P t

K K s K K

NJLs N J R cL s N K K cR K K s K K








     
 (24) 

 

com  is the commanded fin deflection which is equivalent to ( )c t .  

 

AEROSERVOELASTİC MODEL TOPOLOGIES  
 

The mathematical models of servo-actuator and the aeroelastic systems should be integrated, so that 
the interaction between the control system dynamics and the aeroelastic fin could be studied. By 
utilizing the MATLAB command ‘lft’ [The MathWorks Inc., 2003] for the generalized feedback 
interconnection of the actuator and the aeroelastic fin, the linear transfer function of the final 
aeroservoelastic plant to be controlled is obtained. Figure 3 describes the feedback path for the hinge 
moment due to inertial and aerodynamic forcing agents.  
 

 

Figure 3 Open Loop Actuator & Aeroelastic Fin System 

 
Two types of aeroservoelastic model topology are used for the frequency and the time domain 
analysis. The topologies differ in terms of the feedback signal of the controller. Aeroservoelastic Model 
1 (AEM1) is assumed to have perfect sensor that measures the motor shaft position. The topology of 
Aeroservoelastic Model 1 is described in Figure 4. 
 

 

Figure 4 Aeroservoelastic Model 1 (AEM1) Topology 

 
Aeroservoelastic Model 2 (AEM2) is assumed to have a perfect feedback sensor at the fin shaft, that 
directly measures the angular deflection at the fin root.  
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Figure 5 Aeroservoelastic Model 2 (AEM2) Topology 

 
Utilizing the linear models AEM1 and AEM2 time domain and frequency domain analysis could be 
performed. In addition, the effect of the power limit nonlinearity is introduced by saturating the applied 
voltage by 24V and the current by 10A. The overall aeroservoelastic system is modeled also in 
MATLAB Simulink, so that the nonlinearity could be implemented and simulated [Nalcı, O., Kayran, A., 
2013]. 
 
In order to study the aeroelastic effects with different feedback mechanisms, an initial frequency 
domain analysis is performed with the forward path transfer functions obtained by cascading the PD 
controller to three open loop systems; the rigid fin – steady aerodynamics system, AEM1 and AEM2. 
The forward path transfer functions relate the angular position error to the angular position output of 
the related feedback mechanism.They are named FWTF1, FWTF2 and FWTF3 respectively. The 
Bode diagram obtained from the analysis is shown in Figure 6. The linear systems revealed that 

AEM2 is unstable, since the phase crosses -180 before the gain falls below 0 dB. Other systems are 
stable. 
 

 

Figure 6 Comparison of Magnitude and Phase Responses of Forward Path Transfer Functions 
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NUMERICAL SIMULATIONS OF THE AEROSERVOELASTIC SYSTEM 

 
The parameters in Eqn. (24) were full obtained In [Nalcı, O., Kayran, A., 2013], through the design of a 
PD controller. The control system design requirements, which are shown to be fullfilled, are restated in 
Table 1. In order to reveal the interaction between control system dynamics and the aeroelastic fin, 
linear and power source limited nonlinear time domain simulations are performed with both AEM1 and 
AEM2. The flutter characteristics was obtained in [Nalcı, O., Kayran, A., 2013] by tracking the 
aeroelastic system root locus, as given in Table 2. 

Table 1 Performance Requirements of the Control Fin Response 

Settling Time up to 15 Angular Position Command 50 ms 

Steady State Angular Position Error 2% 

Maximum Load Torque 6 N.m 

Minimum Angular Speed at Maximum Load Torque 300°/s 

 

Table 2 Flutter Characteristics at Sea Level 

Altitude (m) 0 

Mach 0.75 

Air Density (kg/m
3
) 1.226 

Speed of Sound 340.3 

Flutter Point Aeroelastic Mode 3 

Flutter Speed (m/s) 253.11 

Flutter Frequency (Hz) 144.1 
eqU  (m/s) 253.11 
eqM  0.74 

 
Figure 7 shows the unit step response of AEM1, with and without the effect of power limit, which is 
specified as 24 V voltage limit and 10 A current limit. According to Figure 7, the nonlinear, power 
limited response still satisfies the settling time and steady state error requirements given in Table 1. 
Little oscillation is observed on the transmission output angular position response, which reflects the 
motor shaft output divided by the combined transmission ratio. Since the linear system behaves faster, 
there is inevitably an overshoot and more oscillation in the linear response. The transmission output 
angular position turned out to be satisfactory in terms of the time domain requirements. 

 

Figure 7 Time History of Transmission Output of AEM1 for Unit Step Input (Linear and Power Limited 
Nonlinear Models) 
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In Figure 8, the angular positions at various elastic degrees of freedom are given for a unit step 

response of AEM1. The lower left corner and the upper right corner are outer corners of the 1
st
 and the 

42
nd

 QUAD4 elements given in Figure 9. 
 

 

Figure 8 Time History of Various Elastic D.O.F of AEM1 and Rigid Fin for Unit Step Input (Power 
Limited Nonlinear Model) 

 

 

Figure 9 Fin Positions Demonstrated in Figure 8 

 
In Figure 8, it is observed that there is an overshoot of 20% to 40% at different locations on the fin. 
The response converges to steady oscillation with static elastic deflection amplitude of about 15% of 
the input. Therefore, it is actually not possible to say that the steady state error requirement is fulfilled 
when the flexibility of the fin is taken into account. A more qualified approach to this requirement would 
be to question the total steady lift generated by the control fin at this static elastic deflection, so that 
the amount of control force provided to the missile could be verified. The green line in Figure 8 is the 
time history of the servo-actuation system model involving a rigid fin and only steady aerodynamic 
moment. The deviation of the elastic response from the rigid fin in terms of steady state error and 
damping behaviour has shown that the fidelity of the rigid fin – steady aerodynamics modeling is 
unsatisfactory. 

 
The contribution of all five aeroelastic modes to the response can be observed by inspecting the 
aeroelastic generalized coordinates’ time history in Figure 10. Since the first 50 ms of motion is 
dominated by the transient behavior of the servo-actuation system, the first aeroelastic mode is 
excited. As a result, its contribution to the oscillatory response is dominant in the transient region. After 
reaching a steady state value, the oscillatory contribution of the first aeroelastic mode dies out, and 
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the oscillatory response becomes dominated by the second aeroelastic mode. The oscillations of the 
second mode dies out rather slower, since this mode is the one at which the flutter is expected. The 
steady state values of aeroelastic generalized coordinates converging to nonzero values imply the 
existence of the static elastic deflection. 
 

 

Figure 10 Time History of Aeroelastic Generalized Coordinates of AEM1 for Unit Step Input (Power 
Limited Nonlinear Model) 

The aeroelastic hinge moment history is given in Figure 11, together with the steady aerodynamic 
moment estimate for the same angular position response. Note that the steady state value of the two 
hinge moments is different due to elastic static deflection of the fin. The oscillatory nature of the load 
implies more wear, and more power consumption to compensate for the fluctuations. 
 

 

Figure 11 Time History of Hinge Moment of AEM1 for Unit Step Input (Power Limited Nonlinear Model) 

 

The response at the transmission output, to a +15 step input is simulated and shown in Figure 12, so 
that the effect of the power limit is fully observed. The nonlinear position response with power limit has 
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due to increased effect of power saturation. The nonlinearity imposed a desirable effect, reducing 
overshoot and oscillation, by limiting the bandwidth of the control system. 
 

 

Figure 12 Time History of Transmission Output of AEM1 for +15 Step Input 

 
The voltage and current time histories are given in Figure 13 and Figure 14 respectively for the unit 

step input and the +15 step input. It is observed that the voltage input of the actuator of AEM1 is 

saturated for a longer time, when the input is +15. This input dependency and the limiting nature of 
the system is inherently nonlinear, but seems to be desirable. 

 

Figure 13 Time History of Voltage Input of AEM1(Power Limited Nonlinear Model) 
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Figure 14 Time History of Voltage Input of AEM1(Power Limited Nonlinear Model) 

 

Figure 15 shows the unit step response of AEM2, without the effect of power limit. According to Figure 
15, the linear response is unstable. In this case, because the system is linear, the position response 
grows unboundedly and AEM2 linear model is dynamically unstable. 
 

 

Figure 15 Time History of Fin Root of AEM2 for Unit Step Input (Linear Model) 

 
Figure 16 shows the unit step response of AEM2 with the power limit. The response in this nonlinear 
case inherits the behavior of many nonlinear unstable systems, namely the limit cycle oscillation. This 
limit cycle oscillation actually seems to be of desirable type, since it prevents the system from going 
unstable, but the oscillation amplitude is clearly unacceptable. A nonlinearity may also introduce 
instability to a system, whereas the linearized version of the system is originally stable. This type of 
instability may have been observed in AEM1, but the limit on voltage is so high that it did not introduce 
such effect. 
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Figure 16 Time History of Fin Root of AEM2 for Unit Step Input (Power Limited Nonlinear Model) 

 
The contribution of all five aeroelastic modes can be observed by inspecting the aeroelastic 
generalized coordinates’ history in Figure 17. The oscillations of the first two aeroelastic modes are 
sustained, do not grow or decay. The steady state values of aeroelastic generalized coordinates 
converging to nonzero values imply the existence of the static elastic deflection. In AEM1, second 
aeroelastic mode was dominant for the steady state response. On the contrary, the first aeroelastic 
mode seems to be more pronounced than the second aeroelastic mode in AEM2. This is due to the 
stronger coupling of the servo-actuator dynamics and aeroelastic dynamics in AEM2. Since the first 
aeroelastic mode’s frequency is closer to the servo-actuation system bandwidth than the second 
aeroelastic mode, it dominates the oscillatory response both for the transient and for the steady state 
response. 
 

 

Figure 17 Time History of Aeroelastic Generalized Coordinates of AEM2 for Unit Step Input (Power 
Limited Nonlinear Model) 
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CONCLUSION 
 
In this study, aeroservoelastic modeling and analysis of a missile control surface which is operated 
and controlled by an electromechanical actuator is performed. The mathematical integration of 
structural, aerodynamic and servoactuation system models developed on the modal basis is 
presented. Two distinct aeroservoelastic model topologies are investigated for stability and 
performance. The models, namely AEM1 and AEM2 are analyzed in frequency domain and time 
domain, by assuming that the aeroservoelastic system is linear. Moreover, by implementing a power 
limit nonlinearity, both topologies are analyzed in time domain. 
 
The first model topology having the transmission output position as the feedback signal, named 
AEM1, turned out to be a stable aeroservoelastic system. The fin’s static deflection and oscillatory 
behavior in AEM1 showed that the fin could not satisfy its 2% steady state error and damped response 
design requirements. The relation of this undesired response to the governing missile control system 
and dynamics is emphasized. The second model topology having the fin root position as the feedback 
signal, named AEM2, responded to input angular position commands with limit cycle oscillations due 
to the voltage input limit. The oscillation amplitude turned out to be unacceptable. It is observed that 
the power limited nonlinear models were slower in response; they had lower overshoots and 
oscillations. The rigid fin – steady aerodynamic loading assumption that lead to the PD controller 
synthesis is discussed. It is concluded that designing the controller by assuming steady aerodynamic 
forces and a rigid fin turned out to be unsatisfactory for the fin under study, when the aeroservoelastic 
phenomena came into the picture.  
 
The resulting aeroservoelastic model is considered to be a generic and fast tool for controller design  
and aeroservoelastic purposes.  
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