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ABSTRACT 

 

In this study; the structural, aerodynamic and servo-actuation system models are built for integration 
into a generic aeroservoelastic model of a typical missile control fin with an electromechanical 
actuator. Linear models of the control fin structure, aerodynamics and servo-actuation system are 
built, in order to be able to analyze the aeroservoelastic system both in frequency and time domain. 
Structural and aerodynamic modeling are performed in MSC PATRAN and MSC FlightLoads and 
Dynamics respectively. The information about the structure and the aerodynamics of the missile 
control fin is extracted from MSC NASTRAN solvers in matrix format, so that the aeroelastic equation 
of motion can be reformulated in MATLAB as a state space model. In order to be able to verify this 
interfacing step; normal modes analysis and flutter analysis are performed with both MSC NASTRAN 
and MATLAB. The unsteady, single frequency, ''Generalized Aerodynamic Force'' matrices obtained 
from MSC FlightLoads and Dynamics are input to a rational fraction approximation method, so that the 
aerodynamic forces are represented in the continuous frequency domain  An electromechanical 
servoactuation system model is developed in MATLAB for controller design. A DC Motor and a 
transmission unit are selected for the smooth operation of the servo-actuation system, in compliance 
with given time response requirements. A PD controller synthesis is then carried out using the Root 
Locus Method. The PD controller design is carried out by neglecting the elastic structural and 
unsteady aerodynamic effects on the fin, as if the fin is rigid and the aerodynamics is steady. 
 
 

INTRODUCTION 

 
The vast majority of problems regarding the flexibility of missiles are focused on control surfaces such 
as fins or canards, since the slenderness of these control surfaces are more pronounced than that of 
the missile body. Moreover, the interaction of structural dynamics with control system dynamics 
renders the control surface design and analysis more intriguing due to the frequency separation 
between structural and control system dynamics being relatively narrow and the motion feedback 
sensors having high enough bandwidth to measure flexible motion. On the contrary, the motion due to 
flexible modes of the missile body are usually filtered by the bandwidth of onboard inertial 
measurement units and the control command generating autopilots during flight, resulting in less 
interaction with the overall missile control system. 
 
Structural modeling of aircraft structures for linear aeroelastic analysis has long been performed by 
utilizing the finite element method[Bisplinghoff, Raymond L., Ashley, H., Halfman, Robert L., 1957]. 
Formulating the structural dynamics of the missile control fin with finite element modeling renders the 
aeroservoelastic model to be applicable to complex geometries of various shapes and boundary 
conditions. Subsonic aerodynamic modeling of slender lifting surfaces on the other hand, is commonly 
carried out by utilizing the linearized potential flow equations, when the flow is confined to small 
incidence angles[Gülçat, Ü., 2010]. MSC FlightLoads and Dynamics module includes a subsonic 
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aerodynamic solver, which solves the linearized potential flow equation for arbitrary geometries by 
panel discretization. The Doublet Lattice Method (DLM), which is an acceleration potential method 
developed by Albano and Rodden [Albano, E., and Rodden, W. P., 1969]  is implemented in the solver 
to model the unsteady lift generation on the panels due to harmonic structural motion. The DLM can 
also be used for modeling the steady aerodynamics when the reduced frequency is very close to zero. 
It is actually equivalent to the Vortex Lattice Method [Luis R. Miranda, Robert D. Elliott, and William M. 
Baker, 1977] when the reduced frequency is zero. The DLM creates the so called Generalized 
Aerodynamic Forcing (GAF) Matrices at specified Mach numbers and reduced frequencies for simple 
harmonic motion of the structure. In order to model the transient aerodynamic phenomena together 
with the steady state aeroelastic condition, the frequency dependent GAF matrices are represented as 
a continuous function of reduced frequency. For a specified Mach number and several reduced 
frequencies obtained by the DLM, it is possible to obtain a continuous frequency response by utilizing 
Rational Function Approximation (RFA) methods [Vepa, R., 1976.]. Roger’s Method [Roger, K. L., 
1977] and Minimum State Approximation Method of Karpel [Karpel, M., and Hoadley, S. T., 1991] are 
most widely used tools for rational function approximation of oscillatory aerodynamic forces. Modeling 
the structural dynamics and aerodynamics with finite element methods renders possible the analysis 
of the aeroelastic system by modal discretization. The control mode approach [Karpel, M., 1999] 
renders possible the application of control action to the aeroelastic system by modal superposition of 
the elastic modes and the rotational rigid body mode of the fin, such that the inertial and aerodynamic 
interaction between the modes can be studied. 
 
 

METHOD 

 
The motivation behind this study is to build structural, aerodynamic and servoactuation system 
models, which could be integrated to form a linear aeroservoelastic mathematical model of an all-
movable aerodynamic control surface. Through the modeling process, the aim is to obtain the 
parameters of the second order linear differential equation given in Eqn. (1), governing the aeroelastic 
dynamics of the missile control fin.  
 

          2 [ ( , )] ( ) ( )mm mm mm mm m acts s q M s s T s   M C K Q  (1) 

 

In Eqn. (1) , mmM  is the modal mass matrix, mmC  is the modal damping matrix and mmK  is the modal 

stiffness matrix; which are all obtained from the finite element model of the fin. m  is the aeroelastic 

generalized coordinate vector, which is the independent variable to be solved for. The aerodynamic 
forcing vector that act on the structure is described as a function of the generalized aerodynamic 

matrices mmQ , which also includes the aerodynamic force generated by the control mode (the 

rotational rigid body mode of the fin), and the external control moment ( )actT s  that is applied to the fin 

by the servoactuation system. The mass, stiffness and aerodynamic matrices in the formulation are 
obtained from the models built in MSC Patran and MSC Flightloads and Dynamics, using the normal 
modes and aeroelasticity solvers of MSC NASTRAN. The matrices obtained are given as input to the 
Matlab codes that model the aeroservoelastic system [Nalcı, O., Kayran, A., 2013]. Finally a state 
space system in the form of Eqn. (2)  is obtained. 
 

      ( ) ( ) ( )sys sysz t z t u t       A B  (2) 

 
In order to verify the interfacing steps between MSC Nastran and Matlab, normal modes analysis and 
flutter analysis are carried out in both software platforms. The p-k method in MSC Nastran, root locus 
method and time domain method in Matlab are utilized for flutter solutions. The normal modes analysis 
is performed by the classical eigenvalue problem solution, with both software platforms. 
 
A servoactuation system is augmented to the aeroelastic system given in Eqn. (2), so that the 
interaction between the control dynamics and the aeroelastic dynamics of the fin can be studied. The 
servoactuation system is comprised of a PD controller and a DC Motor – Transmission assembly . The 
servoactuation system design includes the specification of inertial and external aerodynamic moments 
as input, selecting the proper DC Motor - Transmission assembly, and designing a controller for 
performance and stability requirements of the resulting closed loop system. The existence of 
aeroelastic dynamics is neglected throughout the design process. The PD controller synthesis is 
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carried out using the Root Locus Method. Performance of the servoactuation system is verified in the 
absence of aeroelastic dynamics, with regard to specified performance requirements. The output of 
the servoactuation system model is the input of Eqn. (2). The aeroservoelastic modeling methodology 
followed is given in Figure 1. 
 

 

Figure 1 Methodology of Aeroservoelastic Modeling 

 
Structural Model 
The missile control fin that is studied is tightly connected to the servo-actuation system by a shaft. The 
servo-actuation system is assumed to be composed of a DC Motor and a transmission unit. The 
connection between the fin and the transmission unit and the thickness distribution of the fin are 
depicted in Figure 2 and Figure 3 respectively. 
 

 

Figure 2 Transmission-Fin Connection 

 

 

Figure 3 Thickness distribution of the control fin 
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Two finite element models are prepared for distinct purposes. The first finite element model (FN1) is 
prepared for the p-k method of flutter analysis, and normal modes analysis for the elastic modes in 
MSC Nastran. In this model, the fin is connected to the actuator through a shaft. This shaft is assumed 
to be rigid in all five degrees of freedom except for the rotational degree of freedom in the y-axis 
shown in Figure 4. It is assumed that the shaft reflects the resultant static stiffness of the actuator and 
the connecting shaft. In the y-axis, it has a stiffness of 120 N.m/rad. To model this shaft connection, a 
point on the ground is generated such that it is fixed in all degrees of freedom. The mid-node on the 
root chord of the fin is rigidly connected to this point through a multi point constraint (MPC), such that 
all five degrees of freedom except the rotational one in y-axis is fixed for this node. The rotational 
stiffness of the shaft in y-axis is modeled by a one dimensional bar element which has no mass or 
inertia. The model is shown in Figure 4, where Element 43 is the bar element. The fin structure is 
modeled with 42 QUAD4 elements. 
 

 

Figure 4 Finite Element Model FN1 

 

 

Figure 5 Finite Element Model FN2 

 
A second model (FN2) is prepared, so that the rigid body mode could be obtained together with the 
elastic modes, without affecting the mode shapes and natural frequencies of the elastic modes. The 
rigid body mode is generated so that it is used for modeling the rigid control motion of the actuator. For 
this purpose, the boundary condition on the point on the ground is modified such that it is 
disconnected from the ground in the y-axis rotational degree of freedom. However, in this case, the 
mode shapes and the frequencies of the elastic modes are changed. To generate the needed modes 
in a single normal modes analysis run in MSC Nastran, a very high fictitious inertia is used in the y-
axis, to mimic the fixed boundary condition at the point on the ground. The fictitious inertia is about 10

6
 

times greater than that of the rotational inertia of the fin.  The high inertia adds a huge inertial 
resistance to the motion at the point where it is added. Therefore, the mode shapes and natural 
frequencies contain a rigid body mode, in addition to the original elastic modeshapes and frequencies 

obtained from the model FN1. The mass matrix mmM  is now changed, but the additional inertia is 

discarded from mmM  when it is used in subsequent aeroelastic analysis in Matlab. The model is 

shown in Figure 5, together with the changed boundary condition and the node where the fictitious 
inertia is added. CMASS1 element is used for the added inertia, and a SUPORT statement is inserted 
into the Bulk Data Section of MSC Patran flutter analysis menu [Rodden, W.P., and Johnson, E. H., 
1994], so that the rigid body mode obtained has exactly zero natural frequency. The modes taken into 
account for the aeroelastic analysis are limited by an upper limit of 1000 Hz. Normal modes analysis of 
both models are performed by Nastran, and the comparison of the natural frequencies is given in 
Table 1 for the 5 elastic modes besides the rigid body rotation mode.  
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Table 1 Comparison of natural frequencies determined by finite element models FN1 and FN2 

  Model FN1 
(Hz) 

Model FN2 
(Hz) 

Rigid Body Mode - 0.0000 

Elastic Mode 1 86.8891 86.8891 

Elastic Mode 2 159.6022 159.6022 

Elastic Mode 3 566.0895 566.0895 

Elastic Mode 4 627.1564 627.1564 

Elastic Mode 5 972.5351 972.5351 

 
As observed from Table 1, the fictitious inertia worked perfectly, and the results obtained for the elastic 
natural frequencies of models FN1 and FN2 are identical. Figure 6 shows the first four elastic mode 
shapes. 
 

 

Figure 6 Elastic Modeshapes 1-to-4 

 
An additional normal modes analysis is carried out in MATLAB, so that the matrices, which are 
extracted from MSC NASTRAN using the DMAP codes [Reymond, M., 2006] inserted, are verified. In 
MATLAB, the eigenvalue problem solver function ‘eig’

15
 is used to obtain natural frequencies and 

mode shapes. For the model FN2, natural frequencies obtained from MATLAB are presented together 
with the results of MSC NASTRAN in Table 2.  

Table 2 Natural Frequency Comparison of MSC Nastran and MATLAB Modal Analyses 

  Model FN2 
(Hz) 

Nastran Output 

Model FN2 
(Hz) 

MATLAB Output 
Rigid Body Mode 0.0000 1.52691E-07 

Elastic Mode 1 86.8891 86.8891 

Elastic Mode 2 159.6022 159.6022 

Elastic Mode 3 566.0895 566.0895 

Elastic Mode 4 627.1564 627.1564 

Elastic Mode 5 972.5351 972.5351 

 

Since the modes are identical, the stiffness and mass matrices mmK  and mmM obtained from MSC 

NASTRAN and implemented in MATLAB are used in further aeroelastic analysis with confidence. Note 

that the modal damping matrix mmC  can be set to zero for the sake of simplicity, as its effect on the 

response is usually insignificant when aerodynamic damping forces are present. 
 
Aerodynamic Model 
Aerodynamic modeling of aircraft structures, necessitates a very careful treatment of the underlying 
physical phenomena. The operating conditions of the missile control fin, such as given in Table 3 
should be considered, in order to make physically sound assumptions about the flow. 
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Table 3 Flight Conditions of the Missile Control Fin 

  Minimum Maximum 

Range of Altitudes 0 m 5000 m 

Range of Mach Numbers 0.4 0.6 

Range of Incidence Angle -15° +15° 

 
The flight conditions given in Table 3 implies that the flow around the control fin is subsonic and  
compressible. Furthermore, the aerodynamics can be assumed to be linear in the incidence angle 
region that is specified [Anderson, J. D., 2001]. An additional assumption, that the flow is inviscid 
leads to the well known DLM for unsteady flow, where the final assumption is justified by the fact that 
viscous effects have little effect on the lift on the fin in the relatively small incidence region. 
Aerodynamic modeling of the missile control fin can therefore be carried out in MSC Flightloads and 
Dynamics, with the DLM, for obtaining the unsteady GAF matrices for a predefined region of reduced 

frequency at certain Mach numbers. The GAF matrices mmQ   are then given as input to Roger's RFA 

method, so that the aerodynamic forces are represented in the continuous frequency domain. To 
verify the GAF matrices' implementation to the MATLAB codes developed, flutter analysis in both MSC 
NASTRAN and MATLAB are performed.  
 
The Doublet Lattice Modeling of the missile control fin aerodynamics requires certain rules to be 
followed in MSC Flightloads and Dynamics. Two of them significantly affect the accuracy of 
aerodynamic forcing and subsequent aeroelastic analysis [Rodden, W.P., and Johnson, E. H., 1994]. 
There should be a minimum of 15 boxes (panels) per wavelength for each chord strip. Not less than 
four boxes per chord should be used. Furthermore, boxes (panels) should maintain an aspect ratio of 
less than 3 in the default Doublet-Lattice formulation. The parameter ‘boxes per wavelength’ is defined 

as min max/BPW U f x   where, x  is the chord length of a single panel of the aerodynamic 

surface at a strip. minU  is the minimum airspeed, and maxf is the maximum structural frequency that 

are used in the analysis. Panel discretization of the fin surface is shown in Figure 7 together with the 
‘boxes per wavelength’ criterion and in Figure 8 together with the ‘aspect ratio’ criterion. For the model 
obtained, both criteria are satisfied. 
 

 

Figure 7 Aerodynamic Mesh – Boxes per Wavelength 

 

Figure 8 Aerodynamic Mesh – Aspect Ratio 
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Figure 9 shows the DMAP code inserted to the Executive Control Deck to output the GAF Matrices at 
different reduced frequencies and at a single Mach number to a text file. This text file is read by 
MATLAB with an interfacing code developed. The GAF matrices are output in the k-set, which is the 
aerodynamic grid point set in MSC Nastran [Rodden, W.P., and Johnson, E. H., 1994]. 
 

 

Figure 9 DMAP Code in Executive Control Deck for GAF Matrix Extraction 

 
Rational Function Approximation to Unsteady Aerodynamics: 
Aeroservoelastic formulation of the missile control fin requires transient aerodynamic effects to be 
modeled. The GAF matrices obtained from DLM cannot be directly used to model transient 
aerodynamic phenomena, since DLM is only directly applicable to steady state sinusoidal motion. All 
RFA methods depend on least square techniques, which fit a frequency response function to GAF 
matrices at multiple reduced frequencies. Comparisons of accuracy and computational efficiency 
between these methods are available in literature [Karpel, M.,1982]. Roger’s Method approximates the 
unsteady aerodynamics with following frequency response function that depends on reduced 
frequency and Mach number: 
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In Eqn. (3), 0... 2NA  are the constant matrices to be determined from least square approximation for 

the best fit of ( , )M kQ . n  are the aerodynamic lag roots. n  are preset to specific values in the 

frequency range of interest, so that the aerodynamic lag functions are stable, the least square problem 

becomes linear, and the fit is satisfactory. Note that for each element of ( , )M kQ  at different 

frequencies 1 2( , ), ( , )... ( , )
k

ij ij ij

nM k M k M kQ Q Q , a least square fit is generated. Given a ( , )M kQ  

matrix of size mn  at a Mach number, the number of linear least square fits required is 
2

m kn xn , where 

kn  is the number of GAF matrices at kn  different reduced frequencies. n  are the same for each fit, 

so that the size of the resulting aeroelastic equation is kept small. By modeling the unsteady 
aerodynamics with Roger’s Method, number of states of the resulting aeroelastic equation will be 

( 2)sn N  , where sn  is the number of elastic modal degrees of freedom. To calculate 0... 2

ij

NA  for a 

Mach number, ( , )ij M kQ  is divided into real and imaginary parts such that: 
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Then these parts are written in matrix form, for each Mach - reduced frequency pair: 
 

  [ ( , )]ij ij

R f R fM k K    Q A  (7) 

  ( , ) [ ]ij ij

I f I fM k K   Q A  (8) 

 

where R fK , I fK  and 
ij

A  are defined as:  
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Then the following complex error function is defined for linear least square minimization problem: 
 

 [ ( , )] [ ( , )] [ ( , )]ij ij ij

f f fM k M k M k E Q Q  (12) 

 
The aim is to make a linear least square fit, so that the left hand side of Eqn. (12) is minimized. Then,  
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Eqn. (13) is solved to obtain Eqn. (15). 
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When all 
ij

A  is calculated for each element of ( , )M kQ , one obtains a fit with respect to reduced 

frequency k . In order to use ( , )M kQ  in time domain simulations and frequency domain analysis, it is 

expressed in Laplace domain, using the relation sbik
U

 , as shown in Eqn. (16). 
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GAF matrices are obtained from MSC Nastran in the aerodynamic set, namely the k-set. The matrices 

are then transformed to the m-set as shown in  Eqn. (17) and Eqn. (18), where kaG  and am  are the 

spline matrix matrix between the structural and aerodynamic grid points, and the reduced modal 
matrix respectively. 
 

 [ ] [ ][ ][ ]ij T ij

aa ka kk kaQ G Q G  (16) 

 

 [ ] [ ][ ][ ]ij T ij

mm am aa am Q Q  (17) 
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Then Roger’s method is applied on the m-set GAF matrices to obtain ( , )mm M sQ . In Eqn. (15), the 

number of aerodynamic lag roots is determined so that a satisfactory fit for GAF matrices is 
performed. Typically 2 to 4 lag roots are used in aeroelastic studies[Karpel, M., 1982]. The 
aerodynamic forcing in Laplace domain is finally expressed as in Eqn. (19). 
 

    ( ) [ ( , )] ( )m mm ms q M s sF Q  (18) 

 

In Figure 10 and Figure 11, an element of 
mmQ  and mmQ  are compared for each reduced frequency at 

which mmQ  is obtained. In Figures 10 and 11, estimated elements of the GAF matrices are obtained 

by applying the Roger's RFA to the GAF Matrices at Mach 0.6. 
 

 

Figure 10 RFA Fit for 45Q  

 

Figure 11 RFA Fit for 12Q  

 
Flutter Solution Methods 
There are various flutter solution techniques for aeroelastic systems in literature. The most frequently 
used methods for linear systems that can be represented in frequency domain are the k-method and 
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the p-k method. Commercial programs like ZAERO and MSC
 

Nastran also include the g method and 
the k-e method respectively. P-k method is selected as a frequency domain solution method because 
of its ease of use, and accuracy. Analysis carried out in MSC

 

Nastran includes only the p-k method 
solution. On the other hand, in Matlab, by utilizing state space system matrix obtained in Eqn. (2), the 
root locus solutions are obtained. To calculate the flutter speed, a time domain simulation which has a 
non-zero initial condition, is also performed in Matlab. The results obtained in both software platforms 
are presented, and the aeroelastic model developed in the Matlab environment is verified. . 
 
P-k Method Solution: 
The matched point results of the flutter analysis carried out at three different altitudes with the p-k 
method are presented in Table 4. The methodology of followed in application of the p-k method in 
MSC Flight Loads and Dynamics can be found in [Nalcı, O. , 2013]. 
 

Table 4 Flutter Analysis Results 

Analysis Altitude  (m)
 0 2500 5000 

Flutter Point Aeroelastic Mode 2 Aeroelastic Mode 2 Aeroelastic Mode 2 

Flutter Speed (m/s) 251.12 256.62 292.81 

Flutter Frequency (Hz) 143.55 143.57 143.57 

Equivalent Airspeed (m/s) 251.12 251.04 251.21 

Equivalent Mach # 0.74 0.76 0.78 
 
The mode at which flutter occurs is presented in Figure 12. Airspeed vs. damping coefficient and 
airspeed vs. frequency plots are provided in Figure 13 and Figure 14  respectively, for sea level flutter 
analysis. 
 

 

Figure 12 Flutter Modeshape 

 

Figure 13 Damping Ratio of Aeroelastic Mode 2 Calculated with the p-k Method  
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Figure 14 Frequency of Aeroelastic Mode 2 Calculated with the p-k Method 

 
Root Locus Solution: 

One way of searching for aeroelastic instability is to analyze sysA  , given in Eqn. (2) for stability. The 

eigenvalues of sysA  is equivalent to the poles of the aeroelastic transfer function, and these 

eigenvalues are tracked in the locus of roots diagram, by gradually increasing the free stream speed in 

q . 
sysA  has many eigenvalues which involve information about the dynamics of both the aeroelastic  

generalized coordinates and the aerodynamic lag states. When searching for flutter, one is interested 
in the stability of the generalized coordinates. Note that the transfer function for the aerodynamic lag 
states is given in Eqn. (15), and the poles of that transfer function is selected to be on the left hand 
side of the s-plane, so that the resulting aerodynamic lags do not explicitly bring unstability to the 
system. Then only the eigenvalues corresponding to the generalized coordinates are plotted on the 
root locus. The only aeroelastic system matrix that is subjected to the root locus analysis in this study 
is constructed by utilizing the GAF database at Mach 0.75, at which the flutter analysis was carried out 
with the p-k method. The eigenvalues corresponding to the generalized coordinates are obtained by 

using the MATLAB command ‘eig’ for sysA  at selected free stream speeds which range from 180 m/s 

to 340 m/s, with 10 m/s intervals. System matrix of a damped system gives complex eigenvalues  , 

such that: 
 

 
21j j j j ji         (19) 

 

After each j  is obtained from eigenvalue analysis, j effective damping ratio j  and j undamped 

natural frequency 
j  are obtained for each aeroelastic mode, where the subscript ‘j’ denotes an 

aeroelastic mode. The locus of roots for all aeroelastic modes together is given in Figure 15.  
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Figure 15 Locus of Aeroelastic Roots 

 

 

Figure 16 gives the zoomed picture of the aeroelastic roots for aeroelastic mode 2. 
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 Figure 16 Locus of Aeroelastic Roots for Aeroelastic Mode 2  

 
Since the real part of the aeroelastic roots have positive values as the airspeed increases, instability is 
found in the second aeroelastic mode. The corresponding damping ratio and natural frequency of the 
second aeroelastic mode as airspeed changes are given in Figure 17 and Figure 18 respectively. 

  

Figure 17 Damping Ratio of  Aeroelastic Mode 2 Calculated with the Root Locus Method 
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Figure 18 Natural Frequency of Aeroelastic Mode 2 Calculated with the Root Locus Method 

 
The flutter speed is found to be at 253.11 m/s, at which the damping ratio of the second aeroelastic 
mode is zero. Corresponding to the flutter speed, flutter frequency is obtained as 144.1 Hz. As 
observed from Figure 15, the only aeroelastic mode that has a positive real part is the second mode. 
This result is equivalent to the one obtained in p-k method analysis. For the modes analyzed, no 
mechanism for unstability is observed in modes other than the second aeroelastic mode. 
 
Time Domain Solution: 
In the present study, time domain solution of flutter is also carried out, so that the aeroelastic system 
matrix that will be used for the state space analysis is validated. For this purpose, the aeroelastic 
system matrix constructed with the GAF Database at Mach 0.75 is used. By assigning a unit initial 
condition to the generalized coordinate of the second aeroelastic mode, time response of the 
generalized coordinates of the open loop aeroelastic system is simulated with 1 m/s airspeed 
intervals. Eqn. (21) is integrated with a variable step solver (ode45) built in MATLAB, to obtain the time 
response of generalized coordinates for the quarter of a second. 

 

    ( ) ( )sysz t z t   A  (20) 

 
In Eqn.(21),  the state vector includes aeroelastic generalized coordinates. The initial condition for 

( )z t  is given such that all elements of (0)z is zero except the second aeroelastic generalized 

coordinate. That initial value is set to unity. Time responses of the generalized coordinate 
corresponding to the second aeroelastic mode at selected free stream speeds are presented in Figure 
19, Figure 20 and Figure 21. From Figs. 19-21, it is seen that flutter speed is approximately 254 m/s, 
because at 254 m/s, amplitude of oscillations neither decay nor increase.  
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Figure 19 Time Simulation of the Second Aeroelastic Generalized Coordinate at 248 m/s 

 

 

Figure 20 Time Simulation of the Second Aeroelastic Generalized Coordinate at 254 m/s 
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Figure 21 Time Simulation of the Second Aeroelastic Generalized Coordinate at 260 m/s 

 
Comparison of Flutter Solutions 
The flutter speeds obtained by three different methods at the sea level are given in Table 5 for 
comparison.  
 

Table 5 Flutter Speed Comparison 

 
P-k Method 
(NASTRAN) 

Root Locus Method 
(MATLAB) 

Time Domain Solution 
(MATLAB) 

Altitude (m) 0 0 0 

Mach 0.75 0.75 0.75 

Air Density (kg/m
3
) 1.226 1.226 1.226 

Speed of Sound 340.3 340.3 340.3 

Flutter Point Aeroelastic Mode 3 Aeroelastic Mode 3 Aeroelastic Mode 3 

Flutter Speed (m/s) 251.12 253.11 254 

Flutter Frequency (Hz) 143.55 144.1 - 
eqU  (m/s) 251.12 253.11 254 
eqM  0.74 0.74 0.74 

 
The flutter results presented in Table 5, are considered to be almost identical. Therefore it is 
concluded that the RFA fitting process and the aeroelastic system matrix construction is valid. Note 

that 
eqU  and 

eqM  represents the equivalent airspeed and equivalent Mach number, which should 

match the Mach number used in the analysis. 
 
Servoactuation System Model 
In order to fully obtain the models necessary for aeroservoelastic integration and analysis, an 
electromechanical servo-actuation system with a PD controller is formed. The linear servo-actuation 
system transfer function which is cascaded with a PD controller including a unity feedback is given in 
Eqn. (22).  
 

 
    3 2

@

fin D t P t

com total motor b t t D P t

K K s K K

NJLs N J R cL s N K K cR K K s K K








     
 (21) 

 

where com  is the commanded fin deflection. Note that the aerodynamic hinge moment is not included 

in Eqn. (21), it is treated as a disturbance to the servo-actuation system. The PD controller of the 
servo-actuation system is designed using the Root Locus method [Evans, W. R., 1948] by neglecting 
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the elasticity of the fin and unsteady aerodynamic moment on the fin, as if the fin is rigid and the 
aerodynamics is steady. The performance requirements of the control fin response, which drive the 
PD controller design are given in Table 6. 
 

Table 6 Performance Requirements of the Control Fin Response 

Settling Time up to 15 Angular Position Command 50 ms 

Steady State Angular Position Error 2% 

Maximum Load Torque 6 N.m 

Minimum Angular Speed at Maximum Load Torque 300°/s 

 
The two primary performance requirements that lead to the determination of the servo-actuation 
system components, the DC Motor and the transmission unit, are the required torque and the required 
angular velocity at the fin. The total maximum load torque on the servo-actuator comes from the 
aerodynamic moment and the acceleration torque due to the inertia of the fin. The stall torque of the 
actuator should be higher than the resultant of the two. In general, the inertial torque is small relative 
to the aerdynamic torque, thus neglected in the control design. On the other hand, the size constraints 
on the actuator unit are demanding in missile applications. A missile is required to be light and 
compact as possible for any given mission concept, to reduce the costs and improve the dynamic 
performance. Therefore, strict size constraints are set up on all missile subsystems, including the 
servo-actuation system. In this case, the DC motor is selected according to a diameter constraint (<28 
mm). The DC Motor Specifications are given in Table 7. Since the DC motor is specified, a 
transmission unit that gives the required maximum torque of 6 N.m is to be selected. No reference to 
any specific brand or type of transmission is given here. A transmission unit just capable of producing 
the necessary amount of torque is assumed with following characteristics. The DC motor 
specifications are given in Table 7. The transmission properties assumed are : 

7 266 70% 0.5 10 kg.mtr tr trN J     . 

 

Table 7 DC Motor Specifications 

Faulhaber 2642 024CR 

Diameter 26 mm 

Length 42 mm 

Voltage 24 Volts 

Terminal Resistance 5,78 Ohms 

Rotor Inductance 550 uH 

Torque Constant 34,6 mNm/A 

Rotor Inertia 11 g.cm
2 

 

Note that a current limit is implemented through limiting the applied voltage between lim lim( , )I R I R , in 

addition to a 24V limit for power limited nonlinear simulations. 
 
PD Controller Design 
The controller design is carried out in the s-plane with the root locus method. The poles of the open 

loop actuator transfer function are 1 0s  , 2 168.80s   , and 3 10340.28s   . The root locus method is 

a good candidate for systems having such dominant pair of poles. The aerodynamic hinge moment is 
assumed to be an external disturbance, while deriving the actuator transfer function. Therefore the 
robustness of the closed loop servo-actuation system to the aerodynamic hinge moment is assessed 
in PD controller design by analysis. No integral control action is preferred, because the open loop 
actuator transfer function is inherently a Type I system [K. Ogata, 2003], which has zero steady state 
error. The root locus of the open loop actuator transfer function without the controller near the origin is 
shown in Figure 22.  
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Figure 22 The Open Loop Actuator Root Locus for Dominant Poles  

 
The root locus of the open loop transfer function with the controller is shown in Figure 23, for two 

different zero locations, both on the left of the second dominant pole 2 168.806s    of the open loop 

system, when 1cK  . The zero locations are selected to the left of the second dominant pole so that 

the system response is adjusted to be faster. 
 

 

Figure 23 Root Locus of Alternative Compensated Systems 

 

Figure 23 states that, as the controller gain cK  is increased, the system gets faster without becoming 

unstable. The zeros are placed at 200s    and 250s    respectively. There is always a limit on how 

much the controller gain cK  can be increased or how far away the zeros can be selected. In general, 

This limit is due to the hardware implementation of the control system. The operating frequency of the 
digital control system implemented for the servo-actuation system is assumed to be 1 kHz. Then the 
fastest dynamic in the controller is selected to be 10% percent of this value for proper operation. Then 

the limit on the fastest pole is obtained as min 628.32 rad/ss   .  
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Figure 24 Step Response of Alternative Linear Closed Loop Systems 

 
According to Figure 24, both systems are quite fast, the second one being faster, because the location 
of the zero is further away on the negative real axis. In the nonlinear system with power source limits, 
the system that performs faster in linear analysis may be advantageous. Also, it is possible to increase 

the controller gain cK  further for the second system before reaching the limit mins .  The second 

system with power source limits is simulated to obtain the step response to 14 angular position 
command and the response in given in Figure 25. The steady aerodynamic hinge moment varying 
with angular position is applied to the nonlinear system, to check the closed loop system response 
under anticipated loading conditions. 
 

 

Figure 25 Step Response of System 2 to 14 Command (Linear vs. Power Limited Nonlinear) 

 
Although the system has no overshoot, the steady state error is not acceptable according to the 
specification which is given as 2%. To meet the 2% requirement the PD controller is tuned such that 

10cK  , 275PK   and 1DK  , and a third system is formed. The step response of System 3 to 14 

angular position command is given in Figure 26. 
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Figure 26 Step Response of System 3 to 14 Command (Linear vs. Power Limited Nonlinear) 

 
Note that, the final system meets the steady state error requirement, settling time requirement and 
overshoot requirement all together. The steady state error requirement is more demanding than the 
others, therefore the system turned out to be faster than required. The position, velocity and torque 

profiles are presented for a -15 command when the initial condition is 15. 

 

Figure 27 Angular Position Response of the Power Limited Nonlinear System 
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Figure 28 Angular Velocity of the Power Limited Nonlinear System 

 

 

Figure 29 Applied Torque for the Power Limited Nonlinear System 

 

CONCLUSION 
 
This study is focused on presenting structural, aeroynamic and control system models that are to be 
integrated into an aeroservoelastic missile control fin model, for aeroservoelastic analysis. The 
modeling methods are intended to include enough genericity, so that they are applicable to design, 
analysis and control of all-movable control surfaces in an aircraft, although the study is focused on a 
missile control fin. To provide genericity in structural modeling, the finite element formulation of 
structural dynamics is utilized. One way of using the practical fictitious mass concept [Karpel, M., and 
Raveh, D., 1996] is also presented. Aerodynamic modeling is handled with intermediate complexity, 
by utilizing panel discretization formulation of the Doublet Lattice Method. Panel formulations are still 
industry standard because of their ease of use, increased fidelity when compared to two dimensional 
methods and ability to generate fast estimates of linear aerodynamics when compared to CFD 
methods. Other than the linear unsteady aerodynamic modeling options in MSC Nastran, there are 
other panel discretization based aerodynamic solvers such as ZAERO, which gives high fidelity 
representations of unsteady aerodynamic phenomena even when certain linearity assumptions of the 
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flow is violated. The aerodynamic forces are modeled with Generalized Aerodynamic Force matrices, 
to introduce additional modularity, since the extraction of these matrices is also possible with higher 
fidelity CFD solvers. The Generalized Aerodynamic Force matrices are fitted for a range of reduced 
frequencies with Roger’s RFA method, so that the oscillatory aerodynamic forces can be represented 
in the time domain. Servo-actuation system modeling is carried out by implementing linear and 
nonlinear power limit phenomena in Matlab. 
 
Flutter analysis and normal modes analysis are carried out for verification of Matlab implementation. It 
is observed that the results of analysis carried out in MSC Nastran and Matlab are very close, even if 
different methods such as the p-k method, root locus method and time domain simulation is utilized for 
flutter analysis.  
 
A controller design scenario with its constraints and requirements is followed, so that an 
aeroservoelastic model for frequency and time domain analysis could be built. Under the assumptions 
of steady aerodynamics and a rigid fin, the servo-actuation system is shown to fulfill the performance 
requirements specified, given the power limit nonlinearity. 
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