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ABSTRACT

In this paper, vibration analysis of a blade modeled as an anisotropic composite thin-walled beam is car-
ried out. The analytical formulation of the beam is derived for the flapwise bending, torsion and flapwise
transverse shear deformations. The derivation of both strain and kinetic energy expressions are made
and the equations of motion are obtained by applying the Hamilton’s principle. The equations of motion
are solved by applying the extended Galerkin method (EGM) for symmetric lay-up configuration that
is also referred as Circumferentially Asymmetric Stiffness (CAS). Consequently, the natural frequencies
are validated by making comparisons with the results in literature and it is observed that there is a good
agreement between the results. Effects of flap-twist coupling, transverse shear, fiber orientation, and rota-
tional speed on the natural frequencies and the mode shapes of the rotating thin-walled composite beams
are further investigated.

INTRODUCTION

Due to their high structural efficiency and several potential advantages, thin-walled structures made of
anisotropic composite materials are likely to be widely used in the design of new advanced aeronautical
or space vehicles, robot arms, helicopter/turbine rotor blades and high-altitude-long-endurance (HALE)
aircraft and uninhabited aerial vehicles (UAVs). The directionality property of composite materials can
provide a wide range of elastic couplings in this type of structures (Vo, Thuc Phuong and Lee, Jaehong
(2008a,b); Haddadpour, H. and Zamani Z. (2012); Sina, S. A., Ashrafi, M. J., Haddadpour, H., and Shad-
mehri, F. (2011). It is well known that in order to avoid the occurrence of highly damaging aeroelastic
instabilities, such as fIutter and divergence, these coupling effects should be carefully addressed.

BEAM MODEL

A rotating thin-walled composite beam of length L which is fixed at z = 0 and free at z = L is considered.
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The characteristic cross-sectional dimension of the beam and the maximum wall thickness are represented
by d and h, respectively. Moreover, the rotational speed is denoted by Ω and the hub radius by R0. The
kinematic variables associated with the Cartesian coordinate system of the beam are denoted by the
displacements and cross-sectional rotation which are u, v, w and ϕ . Here, s is tangent to the middle
surface referred as circumferential coordinate and n is normal to the middle surface. The closed contour
is defined by the coordinates x = x(s) and y = y(s). The front and side views of the blade geometry with
the biconvex cross-section is demonstrated in Figure 1.

Figure 1: (a) Front-view, (b) Side-view of the blade, (c) cross-section of AA′

The position vector R measured from the centre of the hub, is expressed as

R = R0 +Rv +∆ (1)

where R0 = R0k, Rv = xi+ yj+ zk and ∆ = ui+ vj+wk
The velocity and acceleration vectors are defined as

Ṙ = [u̇0 +Ω(R0 + z+w0)] i+ v̇0j+[ẇ0 −Ω(x+u0)]k (2)

R̈ =
[
ü0 +2Ωẇ0 −Ω2 (x+u0)

]
i+ v̈0j+

[
ẅ0 −2Ωu̇0 −Ω2 (R0 + z+w0)

]
k (3)
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Displacement Field

In this section, the displacement field of a composite thin-walled beam that undergoes flapwise bending,
flapwise transverse shear and torsion deflections is derived. Here, the Cartesian coordinate system is
represented by (x,y,z) while the coordinates of the curvilinear system is denoted by (n,s,zs). The in-
plane translations of point S(x,y) located at mid-contour, are described by u and v.

u(x,y,z,t) = u0(z, t)− yϕ(z, t) (4)

v(x,y,z,t) = v0(z, t)+ xϕ(z, t) (5)

Here, t is the time, u0 and v0 are the displacements of pole point P, which is located at the origin
(xP = yP = 0) and ϕ(z, t) is the rotation of the cross-section. The tangential and normal displacement
components associated with the curvilinear coordinate system are ut and un, respectively.
The axial displacement accounting both for primary and secondary warping is given below,

w(s,z, t) = w0(z, t)+
[
y(s)−n dy

ds

]
θx(z, t)+

[
x(s)+n dx

ds

]
θy(z, t)

− [Fw(s)−nrt(s)]ϕ ′(z, t)
(6)

The primary warping function accompanied by the quantities off the mid-surface is updated as

Fw =

ˆ

C

[rn(s)−ψ(s)]ds (7)

Note that the secondary warping function is equivalent to nrt(s) (Librescu, L. and Ohseop, S. (2006)).
where

rt (x,s) = x
dx
ds

+ y
dy
ds

(8)

rn (x,s) = x
dx
ds

− y
dy
ds

(9)

Here, rn and rt are the perpendicular distances from the pole point P to arbitrary points on the mid-contour
S and off the mid-contour S′ that are shown in Figure 2.

Figure 2: The perpendicular distances rn and rt

Strain Field

The second assumption implies that the cross-sections do not deform in its own plane (cross-section non-
deformability) (Librescu, L. and Ohseop, S. (2006); Gjelsvik, A. (1981)). As a result of this, the strain
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components εxx, εyy and γxy becomes zero. Furthermore, the non-zero strain components εzz, γxz and γyz
are re-expressed using Eqs. 4, 5 and 6

εzz(s,z,n, t) = ε(0)zz (s,z,n, t)+nε(1)zz (s,z, t) (10)

where
ε(0)zz (s,z,n, t) = w′

0(z, t)+ y(s)θ ′
x(z, t)+ x(s)θ ′

y(z, t)

−ϕ ′′(z, t)
[´ s

0
rn(λ )dλ −

´ s
0

¸
rn(s)ds¸

ds dλ
] (11)

and
ε(1)zz (s,z, t) =

dy
ds

θ ′
y(z, t)−

dx
ds

θ ′
x(z, t)−ϕ ′′(z, t)rt(s) (12)

Similarly, the shear strain components off the mid-line contour are described in terms of displacement
quantities

Γsz(s,z,n, t) = γ(0)sz (s,z,n, t)+ γ(t)sz (s,z,n, t)+nγ(1)sz (s,z, t) (13)

Γnz(s,z,n, t) = γ(0)nz (s,z,n, t) (14)

where
γ(0)sz (s,z,n, t) =

dx
ds

[
u′0(z, t)+θy(z, t)

]
+

dy
ds

[
v′0(z, t)+θx(z, t)

]
(15)

γ(t)sz (s,z, t) = ψ(s)ϕ ′(z, t) where ψ(s) =

¸
rn(s)ds¸

ds
(16)

γ(1)sz (s,z, t) = 2ϕ ′(z, t) (17)

and
γ(0)nz (s,z,n, t) =

dy
ds

[
u′0(z, t)+θy(z, t)

]
− dx

ds

[
v′0(z, t)+θx(z, t)

]
(18)

The superscript (.)(0) indicates the strain components that are zero off the mid-line contour, while the
stains that are different of zero off the mid-line contour are shown by superscripts (.)(1).

Energy Expressions

Before deriving the energy expressions of the beam, initially the application of Hamilton’s principle will
be elaborated. To do so, consider the beam having the potential energy of U , the kinetic energy of K and
the work done by the external loads and body forces of We. The displacements denoted by ∆i =∆i(x,y,z, t)
satisfy the boundary conditions ∆i = ∆̄i and the variations of the displacements also fulfills the condition
δ∆i = 0 at two arbitrary times, t0 and t1. It is ensured by the Hamilton’s principle that, the following
variational is stationary for the actual path of motion from time t0 to t1 and given as

δJ =

t1ˆ

t0

δ (U −K −We)dt = 0 (19)

Since the presented study only covers the free vibration problem, there are no external loads acting on the
beam, δWe = 0.

Strain Energy

Under the assumption of the cross-section deformability, the strain components εss, γnn and γsn were zero.
Thus, the beam cross-sections remain rigid in their own planes. With the non-zero strain components, the
strain energy expression becomes
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U =
1
2

ˆ

V

σi jεi j dV (20)

The variation of the strain energy is simply given as,

δU =
1
2

t1ˆ

t0

Lˆ

0

˛

C

ˆ

h

[σzzδεzz +σszδΓsz +σnzδΓnz]dndsdz (21)

Kinetic Energy

The kinetic energy of the beam, and its variational form can be expressed as follows

K =
1
2

ˆ
V

ρ
(
Ṙ2) dV (22)

δK =−
t1ˆ

t0

dt
ˆ

V

ρ
(
R̈δR

)
dV (23)

The derivation of energy expressions will be elaborated in the full paper.

STRUCTURAL COUPLING CONFIGURATION

Symmetric configuration also referred as circumferentially uniform stiffness(CAS), is adopted to the thin-
walled beam presented here, and as a result various coupled vibration modes are exhibited. This type of
beam features two sets of independent couplings: i) extension-chordwise bending-chordwise transverse
shear coupling, ii) flapwise bending-flapwise transverse shear-twist coupling. This study presents the
flexural-torsional vibration of rotating thin-walled composite beams with CAS configuration. For this
purpose the second set of coupling is employed to the beam model and the solution of first set of coupling
is not included here.

THE GOVERNING SYSTEM OF EQUATIONS

The governing equations of motion for a rotating thin-walled composite beam with CAS configuration of
flapwise bending (v0)-twist (ϕ)-flapwise transverse shear (θx) are given as (Sina, S. A., Ashrafi, M. J.,
Haddadpour, H., and Shadmehri, F. (2011)):

δv0 : a55 (v′′0 +θ ′
x)−a56ϕ ′′′+Tz (v′0)

′ = b1v̈0 (24)

δϕ : a56 (v′′′0 +θ ′′
x )−a66ϕ ′′′′+a37θ ′′

x +a77ϕ ′′+Tr (ϕ ′)′

+(b4 −b5)Ω2ϕ = (b4 +b5) ϕ̈ − (b10 +b18)
(
ϕ̈ ′′−Ω2ϕ ′′) (25)

δθx : a33θ ′′
x +a37ϕ ′′−a55 (v′0 +θx)+a56ϕ ′′

= (b4 +b14)
(
θ̈x −Ω2θx

) (26)

The static and dynamic boundary conditions are given on the right and the left sides, respectively, as
follows:

δv0 : v0 = 0 and a55 (v′0 +θx)−a56ϕ ′′+b1Ω2R = 0 (27)
5
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Figure 3: Lay-ups in circumferentially asymmetric stiffness configuration (CAS).

δϕ : ϕ = 0 and a56 (v′′0 +θ ′
x)−a66ϕ ′′′+a37θ ′

x +a77ϕ ′

=−b1Ω2RIpϕ ′− (b10 +b18)
(
ϕ̈ ′−Ω2ϕ ′) (28)

δθx : θx = 0 and a33θ ′
x +a37ϕ ′ = 0 (29)

δϕ ′ : ϕ ′ = 0 and a56 (v′0 +θx)−a66ϕ ′′ = 0 (30)

δθx : θx = 0 and a33θ ′
x +a37ϕ ′ = 0 (31)

Discarding the axial force one can have Tz (z, t) = b1Ω2R(z) and R(z) = R0 (L− z)+ 1
2

(
L2 − z2

)
.

SOLUTION

For the rotating thin-walled composite beam model investigated here, the governing equations involve
several elastic couplings and the associated boundary conditions are quite complicated. As a result it is
not easy to get the exact solution. Therefore, Extended Galerkin Method (EGM) will be used to obtain
the dynamic characteristics of the beam model. This method suggests selecting weighting functions that
only need to fulfill the geometric boundary conditions Meitrovich, L. (1997). To discretize the eigenvalue
problem, by using the extended Galerkin method the displacements v0, ϕ and θx are assumed to be in the
following form:

v0(z, t) = NT
v (z) qv(t) (32)

ϕ(z, t) = NT
ϕ (z) qϕ (t) (33)

θx(z, t) = NT
x (z) qx(t) (34)

6
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Here, the trial functions are represented by Nv, Nϕ and Nx, which are also called the shape functions
[Meitrovich, L. (1997)] with the dimension N × 1, while qv, qϕ and qx are the vectors of the general-
ized coordinates. The results in the following section are accurately calculated by assuming the shapes
functions in polynomial form ηi, (order ≈ 7−9).
The free vibration problem is specifically described by defining the mass and the stiffness matrices with
the generalized coordinate vectors for each of the corresponding models. By the help of Hamilton’s
principle, the discretized equation of motion is obtained as follows

Mq̈(t)+Kq(t) = 0 (35)

To carry out free vibration analysis, q=Xeiωt is assumed and the eigenvalue problem is defined as follows

(λ I−M−1K)X = 0 (36)

where λ = ω2. Here, the eigenvectors and eigenvalues are represented by X and λ , respectively, while
the natural frequencies of the system are denoted by ω . The mass and the stiffness matrices with the
vectors of the generalized coordinates are defined in the following forms:

M =

1́

0

NvNT
v 0 0

0 µ2Nϕ NT
ϕ +µ3N′

ϕ N′T
ϕ 0

0 0 µ4NxNT
x

dη

K =

1́

0



1+Tz
AR2 N′

vN′T
v − a56

a55L2AR N′
vN′′T

ϕ
1

AR N′
vNT

x

− a56
a55L2AR N′′

ϕ N′T
v

a77+Tr
a55L2 N′

ϕ N′T
ϕ + a66

a55L4 N′′
ϕ N′′T

ϕ
−(b10 +b18)Ω2N′

ϕ N′T
ϕ

−(b4 −b5)Ω2Nϕ NT
ϕ

a37
a55L2 N′

ϕ N′T
x − a56

a55L2 N′′
ϕ NT

x

1
AR NxN′T

v
a37

a55L N′
xN′T

ϕ − a56
a55L2 NxN′′T

ϕ
NxNT

x + a33
a55L2 N′

xN′T
x

−(b4 +b14)Ω2NxNT
x


dη

q =
{

qw qu qx
}T

The variables and quantities that are defined to obtain the non-dimensional equations of motion are given
by,

η =
z
L

d(.)
dη

=
1
L

d(.)
dz

AR =
b
L

v0(η , t) =
v0

b
µ1 = (b5 +b15)/b1

µ2 = (b4 +b5)/b1 µ3 = (b10 +b18)/b1 µ4 = (b4 +b14)/b1

RESULTS AND DISCUSSION

The results of the dynamic analysis of rotating thin-walled composite beams are presented in this section.
Firstly, the dynamic analysis are conducted for the non-rotating beam thin-walled composite beam (Ω=0).
The validation of the natural frequencies is made for the beam of Ref. (Librescu, L. and Ohseop, S.
(2006)) and the results are tabulated for selected ply angles in Table 1. Note that the hub radius is zero
(R0 = 0).
The variation of the stiffness quantities are plotted with respect to ply-angle orientation and given in Fig-
ure 4. Next, for zero rotational speed Figure 5 shows the first, the second and the third eigenfrequencies
as a function of ply-angle. Here solid lines with and without circles represent the unshearable (US) and
shearable beam theories, respectively.
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Table 1: The first three mode eigenfrequencies for the selected ply-angles.
Ply-angle
θ o

ω i (rad/s) Present study Librescu & Song
(2006)

0
ω1 38.6 40.3
ω2 240.3 250.6
ω3 614.7 625.6

30
ω1 42.3 43.5
ω2 262.3 270.1
ω3 725.2 746.7

45
ω1 51.3 52.4
ω2 317.7 324.4
ω3 873.3 892.0

60
ω1 76.0 77.5
ω2 464.0 472.7
ω3 1238.9 1270.0

75
ω1 134.3 136.0
ω2 765.9 773.0
ω3 1308.3 1333.0

90
ω1 236.8 239.0
ω2 630.8 640.0
ω3 1269.7 1280.0
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Figure 5: Natural frequencies vs ply-angle (Ω = 0)

Moreover, Figures 6(a)-6(d) display the variation of the first three natural frequencies with respect to
ply-angle for nonzero rotational speeds. As seen from both figures, discarding transverse shear effect un-
derestimates the natural frequencies and this underestimation becomes more drastic for higher rotational
speeds.
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Figure 6: Variation of natural frequencies for different rotational speeds.

APPENDIX

The elements of the stiffness matrix that appear in Eqs. 24-26 are given as

a33 =

¸ [
K11y2 −2K14y dx

ds +K44
dx
ds

]
ds

a37 =

¸ [
K13y−K43 dx

ds

]
ds

a55 =

¸ [
K̄s

( dx
ds

)2
+K22

(
dy
ds

)2
]

ds

a56 =

¸ [
K12Fw

dy
ds −K24rt

dy
ds

]
ds

a77 =

¸
[2K53 +K23ψ] ds

Modified stiffness quantities are given by,

K11 = A22 −
A2

12
A11

K12 = K21 = A26 − A12A16
A11

K13 = 2
(

B26 − A12B16
A11

)
+ψ

(
A26 − A12A16

A11

)
K14 = K41 = B22 − A12B12

A11

K22 = A66 −
A2

16
A11

K23 = 2
(

B66 − A16B16
A11

)
+ψ

(
A66 −

A2
16

A11

)
10
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K24 = K42 = B26 − A16B12
A11

K43 = 2
(

D26 − B12B16
A11

)
+ψ

(
B26 − A16B12

A11

)
K44 = D22 −

B2
12

A11

K51 = B26 − A12B16
A11

K52 = B66 − A16B16
A11

K53 = 2
(

D66 −
B2

16
A11

)
+ψ

(
B66 − A16B16

A11

)
K54 = D26 − B12B16

A11
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