
7. ANKARA INTERNATIONAL AEROSPACE CONFERENCE                                        AIAC-2013-107 
11-13 September 2013 - METU, Ankara TURKEY 

FLUTTER CHARACTERISTICS OF AN ADAPTIVE WING HAVING CAMBER 

CHANGE AND FREEPLAY NONLINEARITY 

 

ABSTRACT 

The purpose of this study is to investigate the effects of the shape change on the flutter characteristics 
of an adaptive wing having trailing edge camber change. The control surfaces at the trailing edge of 
the wing are used as continuously shape changing flaperons. Depending on the type of the mission 
the air platform encountering, the camber adapts to the flight conditions to increase the flight 
performance. The continuous shape changes of the adaptive camber wing differentiate the locations 
of the aerodynamic, mass and shear centers. This deviation of central locations affects the flutter 
speed since they are directly involved in the reduced order three degrees of freedom flutter model, 
which are the plunge motion of the wing, the pitch motion of the wing and rotation of the control 
surface, which is referred as control surface flapping. The free play nonlinearity was applied on the 
control surface. The effect of camber change on the mass center and shear center locations, in the 
presence of free play nonlinearity were analyzed within the scope of this paper, whereas, the 
aerodynamic center assumed to be located at the same point on the reduced order flutter model for 
every different fundamental shape changes of the adaptive wing. Seven differential camber change 
positions of the control surface will be investigated in this study. The reduced order flutter model 
involves unsteady aerodynamic theory of Theodorsen and the formulation of the nonlinear problem 
was based on the harmonic balance method. The nonlinear flutter solver was an in-house developed 
code. In the future, the information obtained from this study will be used for the aeroelastic 
optimization of the wing structures involving various nonlinearities such as open-section adaptive 
wings like the one used in this study. 
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INTRODUCTION 

 

The purpose of this study is to investigate the effects of the nonlinearities, which arise from the 
camber change capability of an uninhabited aerial vehicle (UAV) wing, on the flutter characteristics of 
the wing. The change of the camber and the shape of the wing during flight results in the change of 
the aerodynamic center, center of gravity and the elastic axis locations. The changes on these 
parameters drastically effects the flutter speed of the UAV. In addition to these, the adaptive 
mechanism used in the wing is an open cross-section structure. The structure being an open cross-
section structure reduces its stiffness and the structure became subject to the free-play nonlinearity. 
The structural nonlinearities causes limit cycle oscillations, which may eventually results in the 
catastrophic failure of the structure. For this reason, the nonlinear aeroelastic behavior of the structure 
has to be considered carefully. 
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In this study a nonlinear flutter solver will be developed for the investigation of the problem stated 
above. The code will be written in FORTRAN language. The code will first communicate with a 
commercial finite element code in order to conduct necessary analysis to compute the parameters, 
which will be used in flutter calculations. Then the code will construct the nonlinear equations of 
motion for a three degrees of freedom reduced order flutter model, called typical section model. 
Afterwards, by using the harmonic balance method the system of nonlinear ordinary differential 
equations will be solved. 

In this study the scope mainly focused on the nonlinear aeroelastic effects of the morphing wing 
concept discussed in the first author’s M.Sc. Thesis [Ünlüsoy, L., 2010]. In the mentioned morphing 
concept the control surfaces were designed as open cross-section structures which leads to a reduced 
stiffness for the control surface deflections. The actuator mechanism, which is responsible for the 
shape changing, inhabits some free play behavior resulting in a piecewise stiffness in the control 
surface flapping motion. Additionally, whenever the control surface is deflected as aileron or flap, the 
cross-sectional properties of the wing are altered drastically. This phenomenon results in a change in 
the shear center of the structural cross-section. The change of the location of the shear center leads to 
a change in both the dynamic and static aeroelastic description of the wing itself. The results of this 
location change of the shear center in terms of aeroelastic parameters will also be considered within 
the scope of this work. 

The wing, which will be analyzed in terms of its aeroelastic characteristics in this study is a modified 
version of the previously analyzed wing [Ünlüsoy, L., 2010]. The changing camber concept used in 
that study will again be used, however the stiffness of the torque box will be reduced and the aspect 
ratio of the wing will be increased. These modifications will be done to increase the slenderness of the 
wing, which is inversely proportional to the flutter and divergence speeds of an aircraft. The structural 
model of the wing is shown in Figure 1. 

 

Figure 1: Structural Model of the Wing 

The wing discussed in this study can perform the camber changes as shown in the Figure 2. The 
camber change parameter shown is a nondimensionalized parameter with respect to the chord of the 
wing. The effect of the differential shape changes shown in the Figure 2 on the flutter speed of the 
wing will be analyzed within the study. 
 

 

Figure 2: Differential Shape Change of the Wing CS (Δfk=0.0c,   Δfk=-0.02c,  Δfk=-0.04c,  
Δfk=-0.06c,  Δfk=-0.08c,  Δfk=-0.10c,  Δfk=-0.12c)[Yaman, Y., 2011] 
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METHOD 

Aeroelastic Modeling 

The early aeroelasticity researches successfully showed that for the slender wings, the dynamic 
instability problems, if they exist, are related to the coupling between the first flexural and first torsional 
resonance frequencies of the wing. This fact makes it possible to introduce a reduced order model 
which is called typical section model. The model is the representation of the dynamic behavior of the 
wing under the influence of the air [Seber, G., Ünlüsoy, L., and Sakarya, E., 2009]. 

In this study a modified version of that mathematical model will be used. In that version control surface 
flapping with the presence of free-play nonlinearity is the modified part. The sketch of the modified 
version of the typical section model is given in Figure 3. 

 

 

Figure 3: Modified 3D Typical Section Model [Bryson, A. E., 1994] 

 
where a is the ratio of the distance between the CG and midchord to the half chord length, b, and c 
indicates the ratio of the distance between the hinge line and the midchord to the half chord length. 
One can then obtain the following system of equations; 
 

 𝑚ℎ̈ + 𝑆𝛼𝛼̈ + 𝑆𝛽𝛽̈ + 𝑘ℎℎ = −𝐿 (1) 

 𝑆𝛼ℎ̈ + 𝐼𝛼𝛼̈ + [𝐼𝛽 + 𝑏(𝑐 − 𝑎)𝑆𝛽]𝛽̈ + 𝑘𝛼𝛼 = 𝑀𝐸𝐴 (2) 

 𝑆𝛽ℎ̈ + [𝐼𝛽 + 𝑏(𝑐 − 𝑎)𝑆𝛽]𝛼̈ + 𝐼𝛽𝛽̈ + 𝑘𝛽𝛽 = 𝐻 (3) 

 
Some of the variables in the system of equations which are kα, kβ, Iα, Iβ and Sβ will be computed by the 
finite element analysis tool with the directions given by the developed nonlinear flutter solver. The 
critical elements of the equations are the aerodynamic terms L, MEA, and H which are lift, aerodynamic 
moment about the elastic axis, and aerodynamic restoring moment of the control surface. The 
aerodynamic term in the equations has to be calculated using an unsteady aerodynamic theory. In this 
study the unsteady solution of Theodorsen will be utilized [Theodorsen, T., 1935]. The nonlinear 
forcing term has to be calculated by harmonic balance method by using the mathematical model of the 
freeplay nonlinearity. 
 
Implementation of the Freeplay Nonlinearity 
In mechanical systems, when there exists a connection of elements driven by an actuator, the 
connection arms of the actuator and the driven elements most probably have gaps. Due to these gaps 
in the locked position of the actuators the actuator arm freely moves. This free motion is called free-
play and it changes the linear stiffness properties into piecewise linear properties. This phenomena is 
called the freeplay nonlinearity in structural dynamics. 
In the adaptive wing concept, the camber changing mechanism is actuated by a servo motor and the 
cross-section of the control surface is an open section. Due to being an open section beamlike 
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structure the system freely vibrates with an assumed peak to peak amplitude of 2o. This free vibration 
may cause limit cycle oscillations and eventually may result in damage or failure of the structure. 
Therefore, the aeroelastic behavior under the influence of freeplay nonlinearity has to be investigated 
to prevent any catastrophe. 
The mathematical model of the free-play nonlinearity of the system can be applied on the linear 
mathematical model of the system through harmonic balance method (HBM). In vibrating systems 
such as the wings of aircraft and especially when the system undergoes a self-excitation such as 
being in flutter, the method became much more effective. 
In the solution procedure, a harmonic solution is assumed. According to the selection of the number of 
the harmonics of the assumed solution, the harmonics are decomposed into their components as of 
the equations of motion. The coefficients of the similar harmonic terms are tried to be balanced. When 
an equilibrium is reached the solution of the nonlinear system is obtained [Schmidt, G. and Tnodl, A. 
2009]. 
The nonlinearities are applied to the system as some kind of harmonic excitations. Every type of 
nonlinearity has its own representation for the harmonic balance method. Free-play nonlinearity is 
commonly represented as the piecewise linear functions as shown in the Figure 4 [Liu, L and Dowell, 
E. H., 2005]. 

 

Figure 4: The Moment-Rotation Relation for a Free-play Nonlinearity Model [Liu, L and 
Dowell, E. H., 2005] 

 
The mathematical representation of the free-play nonlinearity referring to the Figure 4 in the related 
reference is given by; 
 

𝑀(𝛽) =  {
𝛽 + 𝛿
0

𝛽 − 𝛿,
    

𝛽 < −𝛿 
−𝛿 ≤ 𝛽 ≤ 𝛿

        𝛿 < 𝛽             
                (4) 

 
 
Equation (4) is just given in order to introduce the free-play model generically. In order to use HBM, 
the nonlinear system of equations has to be represented in a specified form. The generic free-play 
model given should be introduced in a more meaningful manner. The model given is conducted by 
using unit control surface stiffness approach [Liu, L and Dowell, E. H., 2005]. This is a good approach, 
however when the case of this study is considered the model should also be given with 
nondimensional rotation since one of the golals of the study was to generate a generic nonlinear 

solver. The model should be non-dimensionalized by dividing it with the generalized coordinate 𝛽. In 
addition, the moment term M(β) will be replaced with HN(β), since in the typical section model the 
control surface flapping moment was prescribed as H. The subscript N denotes nonlinearity. Therefore 
Equation (4) can be restated as; 
 

𝐻𝑁(𝛽) =  

{
 
 

 
 1 +

𝛿

𝛽
, 𝛽 < −𝛿

0, −𝛿 ≤ 𝛽 ≤ 𝛿

1 −
𝛿

𝛽
, 𝛿 < 𝛽

            (5) 

 
Now if a single harmonic solution is assumed the flapping motion can be defined as; 
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       𝛽 = Β𝑠 sin𝜔𝑡 + Β𝑐 cos𝜔𝑡 = Β sin(𝜔𝑡 + 𝜙)      (6) 

 

Letting 𝜓 = 𝜔𝑡 + 𝜙 one can write that 𝛽 = Β sin𝜓. 

Define 𝛿 = Β sin𝜓1 or in other words, 𝜓1 = sin
−1 𝛿

Β
 

Keeping these definitions in mind, one can express the nonlinear hinge moment in terms of Fourier 
series as follows; 

 

𝐻𝑠 =
1

𝜋
∫ 𝐻𝑁 sin𝜓 𝑑𝜓
2𝜋

0
              𝑠𝑖𝑛𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑓𝑜𝑟𝑐𝑖𝑛𝑔     (7) 

𝐻𝑐 =
1

𝜋
∫ 𝐻𝑁 cos𝜓 𝑑𝜓
2𝜋

0
         𝑐𝑜𝑠𝑖𝑛𝑒 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 𝑓𝑜𝑟𝑐𝑖𝑛𝑔     (8) 

 
Note that piecewise stiffness (or free-play) nonlinearity is a symmetric function and it has no memory, 
therefore, the functions can be restated as; 
 

𝐻𝑠 =
4

𝜋
∫ 𝐻𝑁 sin𝜓 𝑑𝜓
𝜋/2

0
        (9) 

𝐻𝑐 =
4

𝜋
∫ 𝐻𝑁 cos𝜓 𝑑𝜓
𝜋/2

0
      (10) 

 

Substituting the defined parameters 𝜓 , 𝛽, 𝛿 and  𝜓1inside the integral relation (9); 
 

    𝐻𝑠 = 0 +
4

𝜋
∫ (1 −

𝛿

𝛽
) sin𝜓 𝑑𝜓

𝜋/2

𝜓1
     (11) 

         =
4

𝜋
∫ (1 −

𝛿

Β sin𝜓
) sin𝜓 𝑑𝜓

𝜋/2

𝜓1

 

                   = −
1

𝜋
[2𝛿√1 − (

𝛿

Β
)
2

+ Β(2𝜓1 − 𝜋)] 

and 
𝐻𝑐 = 0          (12) 

 
By using the terms calculated the nonlinear forcing may be approximated as; 
 

𝐻𝑁(𝛽) ≅ 𝐻𝑠(𝛽) sin𝜓 +𝐻𝑐(𝛽) cos𝜓     (13) 
 
This nonlinear forcing term should be multiplied with the control surface rotational stiffness at the left 
hand side of the third equation of motion of the linear system of equations. The system of equations 
given as Equations (1), (2) and (3) became; 

 𝑚ℎ̈ + 𝑆𝛼𝛼̈ + 𝑆𝛽𝛽̈ + 𝑘ℎℎ = −𝐿 (14) 

 𝑆𝛼ℎ̈ + 𝐼𝛼𝛼̈ + [𝐼𝛽 + 𝑏(𝑐 − 𝑎)𝑆𝛽]𝛽̈ + 𝑘𝛼𝛼 = 𝑀𝐸𝐴 (15) 

 𝑆𝛽ℎ̈ + [𝐼𝛽 + 𝑏(𝑐 − 𝑎)𝑆𝛽]𝛼̈ + 𝐼𝛽𝛽̈ + 𝑘𝛽𝐻𝑁(𝛽)𝛽 = 𝐻 (16) 

 
Once the nonlinearity of the problem is defined the rest of the solution is an iteration routine to obtain 
the response of the system to the harmonic excitation. The method used for the solution is p-k Method 
[Rodden, W. P., Harder, R. L. and Bellinger, E. D., 1979]. 
All the analyses will be conducted by the in house developed Nonlinear Flutter Analysis Routine, and 
the code can call for the commercial package program MSC/NASTRAN in order to obtain the stiffness, 
mass and geometric variables necessary for the reduced order model. For each of the differential 
shape change of the control surface, the locations of the shear center and the center of gravity are 
calculated which are used in the flutter model and in the calculation of the Theodorsen aerodynamic 
coefficients. 
 

RESULTS AND DISCUSSION 
While the wing structural model is investigated, the warping effect due to the open section was 
neglected during the shear center calculations. This was practical since the morphing mechanism was 
believed to sustain a uniform camber change along the wing span. 
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The shifting of the locations of shear center and the center of gravity is considered together during the 
flutter analyses of different cases since it is more convenient. In other words, both changes are 
applied simultaneously to the Equations (14), (15) and (16). The differential camber changes given in 
Figure 2 are used for the calculation of the location of the shear center and the center of gravity. There 
are two distances which are important in flutter calculations. First one is the normalized distance from 
shear center to the midchord location with respect to half chord length (denoted as a in the Equations 
(14), (15) and (16)). The second one is the normalized distance between shear center and the center 
of gravity locations with respect to the half chord length (denoted as xα in the Equations (14), (15) and 
(16)). These values are both related with the equations of motion as well as the Theodorsen constants 
[Theodorsen, T., 1935]. The values of these normalized parameters are given for each differential 
camber change in the Table 1. 
 

Table 1: Normalized Shear Center and Center of Gravity Locations w.r.t. Midchord 

Differential Camber Change Value (Δfk) |a| xα 

-0.00c 0.285 0.046 

-0.02c 0.278 0.031 

-0.04c 0.270 0.016 

-0.06c 0.263 0.002 

-0.08c 0.255 -0.013 

-0.10c 0.249 -0.027 

-0.12c 0.244 -0.037 

 
As it can be understood from the values listed in the Table 1 that, the shear center shifts backward 
(through the trailing edge) and the center of gravity shifts forward (through the leading edge) as the 
camber change applied starting from zero Δfk and rotating the trailing edge downward. This downward 
rotation is referred as negative camber change and can be seen in Figure 2 [Yaman, Y., 2011]. This 
opposite shifting affects the flutter speed as shown in the Figure 5. The flutter speed value is 
nondimensionalized with respect to the ωb, where ω is the corresponding damped frequency and b is 
the half chord length. 
 

 

Figure 5: The Effect of the Camber Change on the Nonlinear Flutter Speed 

 
The camber change shifts the locations of the elastic axis and the center of gravity. Due to these 
location changes the nonlinear flutter speed of the wing significantly deviates. At the position where 
Δfk equals 0.06 of the chord, the center of gravity and the elastic axis are very close to eachother. 
This is the condition for an ideal aeroelastic behavior so the flutter speed is maximum. For the other 
cases, lower flutter speeds are calculated. 
Moreover, when the center of gravity location takes place at a forward position with respect to the 
elastic axis, the flutter speed tends to decrease in a steeper manner. This is also an expected 
behaviour since the restoring moment of the pitching motion becomes opposite to the moment caused 
by own weight of the wing structure. This condition leads an unstability at pitch direction. 
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CONCLUSION 

In this study, the effect of camber change on the flutter speed of a nonlinear reduced order wing model 
was investigated. The free-play nonlinearity was inserted into the linear form of the aeroelastic model. 
Harmonic balance method with single harmonic was used for the implementation of the nonlinear 
behavior. 
The system was analyzed with an in-house developed nonlinear flutter solution algorithm written in 
FORTRAN. The solution algorithm was based on the p-k method. The unsteady aerodynamic model 
used was adapted from Theodorsen model. 
The results showed that, the shape change effects the flutter speed of the wing. However, it can never 
be predicted whether the effect is advantageous or disadvantageous since it depends on the position 
of the center of gravity with respect to the elastic axis. The condition that they are coincident is 
believed to be the best condition from flutter characteristics point of view. 
The outcome of this study will be used in aeroelastic optimization and nonlinear flutter prediction of the 
fully morphing aircraft wings. The flutter speed may be controlled, or even suppressed by using 
adaptive structures those shift the center of gravity and elastic axis to favorable locations. 
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