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COMPUTATIONAL MODELING OF VISCOELASTIC TWO-PHASE SYSTEMS 

 

ABSTRACT 

A finite-difference/front-tracking method is developed for the computational modeling of viscoelastic 
two-phase systems. The method is first validated for the benchmark problem of single phase 
viscoelastic fluid flow through an axisymmetric channel with a 4:1 contraction and the results are found 
to compare very well with the computational simulations of Coates et al. (1992). Then it is applied to 
simulate buoyancy-driven viscoelastic two-phase systems in a capillary tube. Results are in good 
agreement with the simulations of You et al. (2009). Further simulations are performed to fully 
characterize the dynamics of buoyancy-driven two-phase viscoelastic systems including a Newtonian 
droplet in a viscoelastic medium, a viscoelastic droplet in a Newtonian medium and a viscoelastic 
droplet in another viscoelastic medium for a wide range of rheological properties of phases. 

 

INTRODUCTION 

Understanding and modeling of viscoelastic flows is of fundamental importance in polymer and food 
industries [Owens and Philips, 2005] as well as in modeling of biological fluids [Zhou et al. 2007]. 
Mathematical models are usually based on the dumbbell assumption and results in highly non-linear 
system of differential equations. Numerous studies of viscoelastic flows using one or more non-linear 
differential models with different discretization techniques including finite element, finite difference and 
finite volume methods can be found in the literature [Bird et al., 1995, Coates et al., 1992, Owens and 
Philips, 2005]. It has been long recognized that modeling of the viscoelastic effects and the numerical 
solution of the model equations are a formidable task. In particular, simulations of viscoelastic fluid 
flows involving free surfaces pose a challenge for numerical methods due to existence of evolving 
interfaces. The front-tracking method has proven to be a viable tool for simulation of interfacial flows 
with multi-physics effects and successfully applied to a wide range of multiphase flow problems 
[Tryggvason et al., 2001; Sarkar and Schowalter, 2000].  

This paper presents a front-tracking method developed for the direct numerical simulations of two-
phase viscoelastic fluid flows encountered or inspired by micro/biofluidics applications. Two widely 
used dumbbell models of FENE-CR [Chilcott and Rallison, 1988] and FENE-MCR [Coates et al., 1992] 
have been incorporated into the front-tracking method. However, it is emphasized here that the 
numerical method can accommodate other types of complex fluid models such as power-law and 
Oldroyd-B fluids. The numerical method is first validated for the benchmark single phase and 
multiphase viscoelastic flows. For this purpose, the method is first applied to the standard single 
phase viscoelastic fluid flow through an axisymmetric tube with a 4:1 contraction. Then it is validated 
for the buoyancy-driven two-phase viscoelastic systems including a Newtonian droplet in a 
viscoelastic fluid and a viscoelastic droplet in a Newtonian fluid. This problem has been recently 
studied by You et al. (2009). After validating the numerical method for these benchmark single and 
multiphase flows, extensive simulations are performed to fully characterize the buoyancy-driven two 
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phase viscoelastic systems including a viscoelastic droplet in another viscoelastic medium, the case 
not studied by You et al. (2009). 

FORMULATION AND NUMERICAL METHOD 

The flow is assumed to be incompressible and symmetric about the axis of the tube. Following Unverdi 
and Tryggvason (1992), one set of governing equations is written for the whole computational domain 
and different phases are treated as a single fluid with variable material and rheological properties. The 
interface is tracked explicitly using a Lagrangian grid while the flow equations are solved on a fixed 
Eulerian grid. The surface tension is computed at the interface using the Lagrangian grid and included 
into the momentum equation as a body force. The viscoelastic effects are usually accounted for based 
on the dumbbell models [Owens and Philips, 2005]. In the present study, we consider two such 
models, namely FENE-CR model of Chilcott and Rallison (1988) and its modified version of FENE-
MCR model [Coates et al., 1992] 

The continuity and momentum equations are given by 

 

 

where , , , , and  are the velocity, the pressure, density, constant solvent viscosity fields and 
extra stress tensor,  respectively. The effects of surface tension is included as a body force in the last 
term on the right hand side, where  is the surface tension,  is twice the mean curvature, and  is a 
unit vector normal to the interface. The surface tension acts only on the interface as indicated by the 
three-dimensional delta function , whose arguments  and  are the points at which the equation is 

evaluated and a point at the interface, respectively. 

The elastic stress tensor  is calculated using the FENE-CR model equations, which can be written in 
terms of a polymer stretch tensor  as [You et al., 2009] 

 

 

 

FENE-MCR model equations are obtained by substituting the stress tensor for the polymer stretch 
tensor in Eqs. (3) and (5) 

 

 

When the variation of  is neglected, the stress tensor formulation is obtained as 

 

In Eqs. (3-8)  , , , ,  and  are the constant polymeric viscosity fields, the relaxation time, 

the ratio of the length of a fully extended polymer dumbbell to its equilibrium length, the stretch 
function, the trace operator, polymer stretch and the identity tensors, respectively. The solvent 
viscosity ratio is defined as , where  is the zero-shear-rate viscosity given as the sum of 
solvent and polymeric contributions, . 

It is also assumed that the material properties remain constant following a fluid particle, 
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Where  is the material derivative. The density, polymeric and solvent viscosities, and 

relaxation time vary continuously across the fluid interface and are given by 

;    

;    

where the subscripts ‘‘ ” and ‘‘ ” denote the properties of the drop and bulk fluid, respectively, and  

 is the indicator function defined as 

                             

The indicator function is calculated following the procedure described by Tryggvason et al. (2001). 

Flow solver 

The momentum equations are solved on a stationary staggered nonuniform grid with velocity nodes at 
the face centers while the pressure, material properties and the extra stress nodes located at the cell 
centers. The spatial derivatives are approximated using second order central finite-differences for all 
field quantities. The time integration is achieved using a projection method originally developed by 
Chorin (1968). The method is briefly described here for completeness. The momentum and mass 
conservation equations are solved using an operator splitting projection method in two steps. In the 
first step, the effects of pressure are ignored and the unprojected velocity field is computed as 

 

where  is the velocity vector,  is  the unprojected velocity vector that does not satisfy the mass 
conservation, the superscript n denotes the time step,  is the discrete version of the nabla operator, 

 is the time step,  is the body force and the surface tension.  In the second step, the velocity is 
corrected by including the effects of pressure gradient as  

 

Taking the divergence of Eq. (13), and requiring that  satisfies continuity, a non-separable 
Poisson’s equation for the pressure field is obtained and is given by 

 

which is solved on the fixed Eulerian grid using a multigrid method. After obtaining the pressure field 
from Eq. (14) the velocity field at the new time level is computed as 

 

In the present paper first order explicit time integration method is used for the time derivatives as 
described above. However, second order time integration can be easily achieved by a predictor 
corrector method as described by Tryggvason et al. (2001). 

Discretization of the Extra Stress Model Equations 

The discretization of the convective term in the extra stress constitutive equations is critically important 
due to its hyperbolic nature. It is known that central differences results in unphysical oscillations near 
the sharp gradients in hyperbolic systems. Thus a high resolution scheme utilizing the MINMOD limiter 
[Harten, 1983] is used to discretize the convective terms in the extra stress equations. The other 
spatial derivatives are approximated using central differences. A simple explicit Euler method can be 
used to integrate the model equations in time for a single phase flows. However Euler method or any 
conventional approximation of the time integration scheme results in singular behavior when passing 
from the viscoelastic region into Newtonian region as the relaxation time scale  vanishes in the 
Newtonian fluid. Sarkar and Schowalter (2000) developed a semi-analytical method to overcome this 
difficulty and we follow the same procedure as described below.  

The FENE-MCR equation for the extra stress can be expressed as: 
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where  is as in Eq. (7).  Eq. (16) can be integrated from time  to  to yield 

 

The above scheme is consistent everywhere (including where =0 for Newtonian case) since the 
exponential time variation has been retained explicitly. This procedure can be applied to a large class 
of differential constitutive relations that have the form as in Eq.(16) with the desired result. 

Furthermore making the approximation  and ignoring the higher 

order terms, Eq. (18) becomes 

 

which is identical to the explicit Euler method. Note that the same procedure is also used to solve the 
FENE-CR model equations. 

COMPUTATIONAL RESULTS 

Single-Phase Viscoelastic Fluid Flow through an Abrupt Axisymmetric 4:1 Contraction 

A single-phase viscoelastic fluid flow through an axisymmetric tube with an abrupt 4:1 constriction is 
considered as shown in Figure 1. The flow conditions are the same as those of Coates et al. (1992). 
Figure 1 shows the streamlines computed by Coates et al. (1992) (top plots) and the present method 
(lower plots) for two different Deborah numbers. It is clearly seen from this figure that the present 
results are in an excellent qualitative agreement with the results of Coates et al. (1992). The 
asymptotic behavior of the shear stress near the reentrant corner is plotted and compared with the 
results of Coates et al. (1992) in Figure 2.  These two figures show the good quantitative agreement 
between the present results with the simulations of Coates et al. (1992) for this standard benchmark 
test case indicating accuracy of the present numerical algorithm.  
 

 
 

 
Figure 1: Corner vortex in calculation on Mesh 6 for the 4:1 contraction with the FENE MCR 
model at Re = 0.1 and β = 0.01. (top) Coates et al. (1992) data, (bottom) this work. 
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Figure 2: Asymptotic behavior of the shear stress near the reentrant corner for the FENE-
MCR model on finest mesh at Re = 0.1, β = 0.1, De = 0.5(●), De = 1(▲) and De = 2.35(▼). 
Also presented are values of Coates et al. (1992) (dash-dot lines) with same color for same 
De. 

Buoyancy-Driven Two-Phase Viscoelastic Systems 

Buoyancy-driven two-phase viscoelastic systems are simulated using the present method as a second 
test case. This problem was recently studied by You et al. (2009) using different numerical method. All 
three cases of a viscoelastic droplet in a Newtonian medium, a Newtonian droplet in a viscoelastic 
medium and a viscoelastic droplet in a viscoelastic medium are studied through extensive numerical 
simulations. The flow conditions are set to be the same as You et al. (2009) to facilitate direct 
comparisons. The present results are compared with those of You et al. (2009). Note that a 
viscoelastic droplet in another viscoelastic medium was not studied by You et al. (2009) so only our 
results are presented for this case. The details of the initial and boundary conditions as well as other 
flow quantities can be found in You et al. (2009). 

A Newtonian Drop Rising in a Viscoelastic Suspending Fluid 

The method is first applied to study the motion of a Newtonain droplet rising in a visco-elastic medium. 
Figure 3 shows a comparison of the present results with the results of You et al. (2009). Figure 3a 
shows the steady shape of the droplet while Figure 3b shows the steady state distribution of the 
polymer conformation tensor, B. As stated in You et al. (2009), the contours of Bzz show concentrated 
uniaxial polymer stretch in the region around the rear stagnation point of the drop, which pulls the 
interface out and results in a tapered trailing end. Since Bzz is small around the leading edge, the drop 
does not experience noticeable deformation in the vicinity of its front end. The results obtained in this 
work are overall in good agreements with the study of You et al. (2009) demonstrating the accuracy of 
the present simulations. 
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a. b.  

Figure 3: Comparison of a) droplet front and, b) contours of polymer stretch tensor component 
for a Newtonian drop rising in a FENE-CR model fluid. Re =10, Ca=20, De=50 

A Viscoelastic Drop Rising in a Newtonian Suspending Fluid 

Next a viscoelastic droplet rising in a Newtonian medium is simulated. Figures 4a and 4b show steady 
state shape of the droplet and the distribution of the polymer conformation tensor component Bzz 
together with the corresponding results of You et al. (2009). As stated in You et al. (2009), the polymer 
inside the drop is stretched along the flow direction and the drop achieves a steady cylindrical shape 
with a dimpled trailing end. Since the local flow direction is normal to the interface at the rear 
stagnation point, the polymer stretch component Bzz reaches its maximum value at that point and pulls 
the interface inward. As shown in the Figure 4, the same phenomenon is well captured in the present 
results being in a good agreement with You et al. (2009).  

 

a.  b.  
Figure 4: Comparison of a) droplet front and, b) contours of polymer stretch tensor component 
for a drop of FENE-CR model fluid rising in a Newtonian suspending fluid. Re =10, Ca =50, 
De=50 

 

 

 

Present You et al. 
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A Viscoelastic Drop Rising in another Viscoelastic Medium 

Finally the buoyancy-driven motion of a viscoelastic droplet rising in another viscoelastic medium is 
studied. Sample results for this case are shown in Figures 5 and 6. It is observed that shape of the 

drop depends on the ratio of relaxation times ( ) of the drop and the suspending medium. For 

 prolonged tail is observed. In this case, the relaxation time of medium is 5 times greater than 
drop, which is similar to the case where Newtonian drop moving in the viscoelastic medium. On the 
other hand, for , the relaxation time of the drop is 5 times greater than the medium. In this case, 
the shape of the drop is similar to the case where viscoelastic drop is in Newtonian medium but 
without any dimple at the trailing end.   

 
Figure 5: Dependance of a FENE-CR viscoelastic droplet shape in a viscoelastic medium to 
the ratio of relaxation parameter 

 

 
Figure 6: Contours of velocity and polymer stretch tensor component for a drop of FENE-CR 

model fluid rising in a Newtonian suspending fluid with relaxation ratio  (upper plots) 

and   (lower plots) 
 

 

 

CONCLUSIONS 
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A front-tracking method is developed for computations of viscoelastic interfacial flows. The method is 
validated for single phase and multiphase cases. In single phase case there is a good agreement with 
the analytical solutions and numerical results of Coates et al. (1992). For multiphase case, the results 
for Newtonian droplet in viscoelastic medium and viscoelastic droplet in Newtonian medium are in 
good agreement with the numerical simulations of You et al. (2009). Additionally, the simulations of 
the dynamics of a viscoelastic droplet in another viscoelastic medium are also presented. As a future 
study, the numerical method will be applied to study the motion and deformation of a viscoelastic 
droplet in a pressure driven axisymmetric contraction/expansion micro-channel and the results will be 
compared with the available numerical and experimental data.   
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