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ABSTRACT 

 

Reliability of highly safe structural systems can be estimated efficiently by using tail modeling. The 
main idea of tail modeling is to perform a relatively small number of limit -state function calculations 
through a sampling scheme, specify a threshold value that defines the tail part, and then fit a 

probability model to the tail part. The selected threshold value has a significant effect on reliability 
estimations. This paper aims at drawing some guidelines for proper selection of the threshold value 
using benchmark mathematical example problems with varying number of random variables, level of 

nonlinearity and level of safety. Finally, tail modeling is applied to reliability prediction of a horizontal 
axis wind turbine. It is found that the tail modeling can predict the high reliability of horizontal axis wind 
turbine efficiently and accurately.  

 
INTRODUCTION 

 

The limit-state function of a structural system is usually evaluated through computationally expensive 
finite element analyses. The simulation techniques such as Monte Carlo method [Liu, 2001] or its 
advanced variants (e.g., importance sampling [Melchers, 1989], adaptive importance sampling [Wu, 

1994], directional simulation [Nie and Ellingwood, 2000]) require a large number of limit-state 
evaluations; hence they are not suitable for highly safe structural systems. Alternatively, the analytical 
methods such as first-/second- order reliability methods (FORM/SORM) are computationally efficient, 

but their accuracy diminishes as the limit-state function becomes nonlinear. To overcome the 
drawbacks of these traditional methods, the techniques based on tail modeling have been successfully 
used for reliability assessment at high reliability levels [Kim et al., 2006; Ramu, 2007; Mourelatos et 

al., 2009; Acar, 2011]. 
Reliability estimation using tail modeling is based on approximating the tail of the cumulative 
distribution function (CDF) of the limit-state function. The main idea is to perform a relatively small 

number of limit-state function calculations through a sampling scheme (e.g., Monte Carlo sampling, 
Latin Hypercube sampling), specify a threshold value that defines the tail part, and then fit a probability 
model (e.g., generalized Pareto distribution) to the tail part. The selected threshold value plays an 

important role on reliability estimations. Selection of the proper value for threshold has been an active 
research area and some empirical techniques have been proposed. However, none of these 
techniques presents a globally accepted solution to threshold selection [Ramu, 2007]. In this paper, 

the effects of function nonlinearity (measured with the coefficient of determination R
2
), and distribution 

properties (e.g., coefficient of variation, skewness) of random variables on threshold selection are 
explored.  

The paper is organized as follows. Section 2 presents a brief overview of tail modeling. Discussions on 
selection of the proper threshold value are also provided in Section 2. The benchmark example 
problems used in this paper are presented in Section 3. Guidelines for threshold selection are 

presented in Section 4. Tail modeling is then applied to reliability prediction of a horizontal axis wind 
turbine and the results are given in Section 5. Finally, concluding remarks are listed in Section 6. 
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OVERVIEW OF TAIL MODELING 

 
Consider the limit-state function y(x), where x is the vector of random variables. For a large threshold 
value of yt (see Figure 1), the region above the threshold (i.e., the tail part) can be approximated by 

using generalized Pareto distribution (GPD). The GPD approximates the conditional excess 

distribution of Fz(z), where tyyz  , through 
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

, 0z , and Fz(z) is the GPD with shape and scale parameters ξ and σ, 

respectively. 

 
Figure 1: Tail modeling concept 

 
The conditional excess distribution can be related to the cumulative distribution F(y) through 
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Then, F(y) above the threshold (i.e., tyy  ) is expressed in terms of the conditional excess 

distribution, Fz(z), through 

      1t t z tF y F F F y y     (3) 

Once the cumulative distribution function F(y) is obtained, the probability of failure can be estimated 
from [Ramu, 2007] 
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Also, the generalized reliability index can be calculated from 

  1 1 fP    (5) 

where   is the cumulative distribution function of a standard normal random variable. 

As noted earlier, selection of the threshold value has a significant effect on reliability estimations. This 
will be discussed next in the followings. 
 

Selection of Threshold 
There is a tradeoff between bias and variance in threshold selection. If a low threshold is selected, 
then points belonging to the central part can also contribute to the tail modeling, resulting in bad 

approximation of the tail. On the other hand, if a high threshold is selected, then the number points 
used in tail modeling is very small, resulting in large scatter in probability estimation.  
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Boos [Boos, 1984] recommended the use of 0.2tN N  for 50 ≤ N ≤ 500 and 0.1tN N  for 500 < N 

≤ 5000, where Nt is the number of data that belongs to the tail part, and N is the total number of data. 

Hasofer [Hasofer, 1996] suggested to use NNt 5.1 . Caers and Maes [Caers and Maes, 1998] 

proposed that the optimal Nt value can be selected to minimize the mean square error, which can be 

estimated using bootstrap technique. However, none of these techniques presents a globally accepted 
solution to threshold selection [Ramu, 2007]. 
After the threshold value is determined, GPD model parameters (ξ and σ) are estimated. The methods 

used for determination of GPD model parameters include, maximum likelihood estimation (MLE), 
method of moments, probability weighted moments, elemental percentile method, the least square 
regression method. The mostly used and the widely accepted method is the MLE method [Ramu, 

2007], so MLE is used in this paper. 
 

EXAMPLE PROBLEMS 

 
To form a guideline, several benchmark example problems with varying number of random variables, 
nonlinearity and reliability levels and skewness are considered. The details of these example problems 

are given below. 
 
Branin-Hoo Function 

Branin-Hoo function has two random variables x1 and x2 following normal distributions. Mean and 
standard deviation of the random variables are given in Table 1.  
 

Table 1: Mean and standard deviation values of random variables in Branin-Hoo function. 

Variable Mean  Standard Deviation 

x1 2.5 2.5 

x2 7.5 2.5 

 
The limit state function of this problem is given as, 
 

 1 2, critY y x x y            (6) 

where the Branin-Hoo function is 

 

      
2

2

1 1
1 2 2 12

5.1 5 1
, 6 10 1 cos 10

4 8

x x
y x x x x

  

   
         

  
        (7) 

 

The ranges of the variables are given as, 



x1  5,10 , and 



x2  0,15 . Branin-Hoo function, with the 

variables at their specified ranges, is illustrated in Fig. 2.  
 

 
Figure 2: Branin-Hoo function  
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The value of ycrit, computed in Eq. (6) is varied to adjust the reliability level. Various ycrit values with 

corresponding reliability levels are given in Table 2. The reliability indices in Table 2 are computed 
through Monte Carlo Simulation with a sample size of 100 million 
 

Table 2: Various ycrit values with corresponding reliability levels for Branin-Hoo function 

ycrit Reliability Index 

220 3.30 

330 3.83 

440 4.15 

550 4.44 

 
Camelback Function 
Camelback function has two random variables x1 and x2 following standard normal distribution. The 

limit state function of this problem is given as, 
 

 1 2, critY y x x y                          (8) 

 
where the Camelback function is 
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Camelback function is illustrated in Fig. 3. 

 
Figure 3: Camelback function  

 

The value of ycrit in Eq. (8) is varied to adjust the reliability level. Various ycrit values with corresponding 
reliability levels are given in Table 3. 
 

Table 3: Various ycrit values and corresponding reliability indices for Camelback function 

ycrit Reliability Index 

400 2.95 

800 3.52 

1400 4.00 

 
 
Goldstein-Price Function 

Goldstein-Price function has two random variables x1 and x2 following standard normal distribution. 
The limit state function of this problem is given as, 

 1 2, critY y x x y             (10) 

where the Goldstein-Price function is 

 (     )  [  (       )
 (           
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Goldstein-Price function is illustrated in Fig. 4. 

 
Figure 4: Goldstein-Price function  

 
The value of ycrit in Eq. (10) is varied to adjust the reliability level. Various ycrit values with 

corresponding reliability levels are given in Table 4. 
 

Table 4: Various ycrit values and corresponding reliability indices for Goldstein-Price function 

ycrit Reliability Index 

3×10
6
 2.74 

1×10
7
 3.25 

3×10
7
 3.75 

8×10
7
 4.25 

 
Sine Function 
Goldstein-Price function has two random variables x1 and x2 with normal distributions. The mean and 

standard deviation values for random variables are given in Table 5.  
 

Table 5: Mean and standard deviation values of random variables in Sine function 

Variable Mean  Standard Deviation 

x1 1 3 

x2 1 3 

  

 
The limit state function of this problem is given as, 

 1 2, critY y x x y          (12) 

 
where the Sine function is 

     1 2 1 2 2 1, sin siny x x x x x x         (13) 

 

Sine function is illustrated in Fig. 5 

 
Figure 5: Sine function  
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The value of ycrit in Eq. (12) is varied to adjust the reliability level. Various ycrit values with 

corresponding reliability levels are given in Table 6. 
 

Table 6: Various ycrit values with corresponding reliability levels for Sine function 

ycrit Reliability Index 

9.0 2.53 

12.5 3.39 

15.5 4.01 

 
Wu’s Cantilever Beam Problem 

This problem was first introduced by Wu et al. (2001). The cantilever beam illustrated in Fig. 6 has two 
failure modes: stress failure and excessive displacement. The minimum weight design is sought by 
varying the width w and thickness t of the beam. The applied loads FX and FY as well as the elastic 

modulus E and yield strength R are random, all following normal distributions. The random variables’ 
mean and coefficient of variation values as listed in Table 7. The beam width w and thickness t are 
modeled as deterministic variables.  

 
Figure 6: Cantilever beam: geometry and loading 

 
Table 7: Mean and standard deviation values of random variables in Wu’s cantilever beam problem. 

Variable Mean Coefficient of Variation 

FX (N) 500 0.20 

FY (N) 1000 0.10 

E (MPa) 2900 0.05 

R (MPa) 400 0.05 

 
The limit-state function corresponding to stress failure mode can be written as  
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Similarly, the limit-state function corresponding to displacement failure mode can be written as  
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where the beam length L is taken as 100 cm and the critical displacement D0 is set to 2.2535 cm. 
The geometric properties for minimum weight vary to adjust the reliability level. Various width and 

height values with corresponding reliability levels are given in Table 8. 
 
Table 8: Various beam designs and corresponding reliability levels for Wu’s cantilever beam problem 

for stress failure mode and displacement failure mode 

Width Height Stress Reliability Index Displacement Reliability Index 

2.4494 3.8884 3.01 3.01 

2.5135 3.9136 3.50 3.65 

2.5786 3.9400 4.00 4.34 
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Tuned Vibration Absorber Problem 

The tuned vibration absorber problem is a damped single degree of freedom system with dynamic 
vibration absorber shown in Fig.7. This example is taken from Kim et al (2006). The original system is 
externally excited by a harmonic force and the vibration of the system is reduced by the absorber. The 

amplitude of the vibration depends on the following system parameters:  

 
m

R
M

 , the mass ratio of the absorber to the original system 

  , the damping ratio of the original system 

 1
1

n


 , the ratio of the natural frequency of the original system to the excitation frequency  

 2
2

n


 , the ratio of the natural frequency of the absorber to the excitation frequency  

 

 
Figure 7: Tuned Vibration Absorber 

 
Tuned vibration absorber problem has two random variables β1 and β2 following normal distributions. 

R and  are taken as deterministic variables with the values R = 0.01 and  = 0.01. Random variables’ 
mean and standard deviation values are given in Table 9. 
 

Table 9: Mean and standard deviation values of random variables in tuned vibration absorber problem 

Variable Mean  Standard Deviation 

β1 1 0.025 

β2 1 0.025 

 
The limit-state function for this problem can be expressed as 

 1 2, critY y y           (16) 

 

where  1 2,y    is the amplitude of the system normalized by the amplitude of the quasi static 

response of the system, and this normalized amplitude can be calculated from 
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The normalized amplitude of the original system is plotted in Fig.  8. 
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Figure 8: The normalized amplitude of the vibration absorber 

 
The value of ycrit in Eq. (16) is varied to adjust the reliability level. Various ycrit values with 
corresponding reliability levels are given in Table 10. 

 
Table 10: Various ycrit values with corresponding reliability levels for tuned vibration absorber problem 

ycrit Reliability Index 

27 2.29 

48 3.03 

53 3.86 

 
Fortini’s Clutch Problem 
The overrunning clutch assembly, given in Fig. 9, is known as Fortini’s clutch. This example is taken 

from Lee and Kwak (2006). Fortini’s Clutch problem has four random variables x1, x2, x3 and x4 
following normal distributions. Random variables’ mean and standard deviation values are given in 
Table 11. 

 
 

 
 

Figure 9: The clutch assembly [Courtesy of Lee and Kwak 2006]  

 
 

Table 11: Mean and standard deviation values of random variables in Fortini’s Clutch problem  

Variable Mean  Standard Deviation 

x1 55.29 0.0793 

x2 22.86 0.0043 

x3 22.86 0.0043 

x4 101.60 0.0793 

 

 
The limit-state function for this problem can be expressed as 

 

 1 2 3 4, , , critY y x x x x y         (18) 
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The contact angle y is given in terms of the geometric variables x1 through x4 as 

 

 
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x x x
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       (19) 

 
The value of ycrit in Eq. (18) is varied to adjust the reliability level. Various ycrit values with 

corresponding reliability levels are given in Table 12. 
 

Table 12: Various ycrit values with corresponding reliability levels for Fortini’s clutch problem 

ycrit Reliability Index 

4.5 3.10 

4.0 3.55 

3.5 3.94 

 
 
Simply Supported I-beam Design Problem 

In this example, a simply-supported I-beam (given in Fig. 10) under a concentrated load as discussed 
in Huang and Du (2006) is examined. Simply supported I-beam design problem has eight random 
variables which follow normal distribution. The mean and standard deviation of these variables are 

summarized in Table 13. 
 
 

 
Figure 10: The cross section and loading on the I-beam 

 

Table 13: Mean and standard deviation values of random variables in simply supported I-beam design 
problem 

Variable Mean  Standard Deviation 

P 6070 200 

L 120 6 

a 72 6 

S 170000 4760 

d 2.3 1/24 

b f 2.3 1/24 

tw 0.16 1/48 

tf 0.26 1/48 

 
 
The limit-state function for this problem is formulated as the difference between the strength, S, and 

load effect in terms of maximum normal stress, 



max  due to bending given by  

 

                   (20) 

 
where 

 
LI

daLPa

2
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
 ;   

  
12

2
33

fwff tdtbdb
I


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The value of S in Eq. (20) is varied to adjust the reliability level. Various S values with corresponding 

reliability levels are given in Table 14. 
 

Table 14: Various S values with corresponding reliability levels for Simply Supported I-beam Design 

problem 

S Reliability Index 

30,000 2.76 

40,000 3.26 

50,000 3.73 

 

 
GUIDELINES FOR THRESHOLD SELECTION 

 

To develop a guideline, tail modeling is applied to all example problems. For all problems, N=500 
samples of each random variable are generated from the given distribution types and then limit state 
functions are calculated and sorted. Threshold value is changed from 0.80 to 0.99 by 0.01 at each 

step and the tail portion is defined. Generalized Pareto distribution (GPD) is fitted to the tail portion, 
scale and shape parameters are estimated and corresponding reliability index values are calculated. 
The overall procedure is repeated for 1000 times and root mean square error (RMSE) for reliability 

index estimations is calculated. RMSE is chosen because it combines the effect of both bias and 
variance. Finally the threshold value for minimum RMSE is determined. Figure 11 shows the variation 
of bias, variance and RMSE for Branin-Hoo (when ycrit=220) and Camelback (when ycrit=400) example 

problems. For Branin-Hoo problem, the threshold value for minimum bias is Ft=0.85, the threshold 
value for minimum variance is Ft=0.99, and the threshold value for minimum RMSE is also Ft=0.99 as 
seen from Fig. 11(a). It is shown in Fig. 11(b) that the critical threshold values for Camelback problem 

are different from Branin-Hoo problem so that the threshold value for minimum bias is F t=0.99, the 
threshold value for minimum variance is Ft=0.80, and the threshold value for minimum RMSE is 
Ft=0.91. 

 

 
(a) 

 
 

 

 
(b) 

 
Figure 11: Variation of bias, variance and RMSE for Branin-Hoo (when ycrit=220) and Camelback 

(when ycrit=400) problems 

 
 
For all example problems, coefficient of determination (R

2
), coefficient of variation, and skewness 

values are also calculated and variation of these parameters with the threshold for minimum RMSE 
are obtained. Figures 12 through 14 show that the dependence of the threshold selection on the 
number of variables, R

2
, the coefficient of variation, and skewness is very complex and far from being 

linear. Based on the results obtained from all example problems, the use of Ft=0.90 is found to be a 
proper threshold value. 
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Figure 12: Relationship between the threshold value and R
2
 

 
 

 
 

 
 

Figure 13: Relationship between the threshold value and coefficient of variation 
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Figure 14: Relationship between the threshold value and skewness  

 
 

APPLICATION TO RELIABILITY PREDICTION OF A HORIZONTAL AXIS WIND TURBINE 

 
Wind turbines are used to convert wind power to electrical energy. Based on their rotation types, wind 
turbines can be divided into two categories as vertical axis wind turbines (VAWT) and horizontal axis 

wind turbines (HAWT). Today, HAWTs are used for most of the electricity production.  
Capacity of a wind turbine changes due to its diameter. As turbine diameter increases, the capacity of 
the wind turbine also increases. Wind turbine development over years by means of both diameter size 

and capacity is given in Figure 15.  
 

 
Figure 15: Wind turbine development [Courtesy of European Wind Energy Association, 2010] 

y = 0,0008x + 0,9052 
R² = 0,0071 

0,00

0,20

0,40

0,60

0,80

1,00

1,20

-10,0 -5,0 0,0 5,0 10,0 15,0

Ft
_r

m
se

 

Skewness 

Ft_rmse vs Skewness 



AIAC-2013-088  Kandemir & Acar 

13 

Ankara International Aerospace Conference 

 

In this section, reliability prediction of Risoe wind turbine is considered. Risoe wind turbine is a 100 kW 

HAWT developed by Denmark Technical University National Laboratory for Sustainable Energy to be 
used for field testing purposes. The reason for choosing this particular wind turbine is that there exist 
detailed accessible information on turbine geometry and other characteristics in many sources 

including the U.S. National Renewable Energy Laboratory (NREL). Table 15 provides the geometrical 
characteristics of Risoe wind turbine, taken from Ceyhan et al., 2009. Risoe wind turbine blades are 
twisted and tapered (see Figure 16), and use NACA 63-4xx series airfoils. 

 
Table 15: General characteristics of Risoe wind turbine [Ceyhan et al., 2009]  

Number of Blades 3 

Turbine diameter 19 m 

Rotational Speed 47.5 rpm 

Cut-in wind speed 4 m/s 

Control type Stall 

Rated power 100 kW 

Root extension 2.3 m 

Blade set angle 1.8 degree 

Maximum Twist 15 degree 

Root Chord 1.09 m 

Tip Chord 0.45 m 

Airfoil NACA 63-4xx series 

 
 

 
 

  
(a) twist variation (b) taper variation 

 

Figure 16: Twist and taper variation of Risoe wind turbine blades over the chord 
 
 

In this application problem, the aerodynamic performance of Risoe WT blades is considered. The 
aerodynamic performance of the WT is measured by its ability to provide at least 100 kW power when 
the wind speed is at the maximum power wind speed of 13.5 m/s. The power generated by the WT is 

evaluated using WT_Perf software (a free software developed by NREL) that uses the blade element 
momentum theory.  
Blade element momentum theory (BEMT) is one of the oldest and most commonly used methods for 

evaluating the aerodynamic performance of wind turbines. BEMT is a combination of blade element 
theory and momentum theory [Burton et al., 2001]. Even though the theory is based on many 
assumptions, it still provides satisfactory results at low wind speed values [Snel 2003, Ceyhan et al. 

2009]. In this theory, the flow is assumed to be continuous, homogeneous, steady-state, 
incompressible, axisymmteric and the turbulence effects are ignored. 
In blade element theory, the blades are divided into a large number of elements that operate as two-

dimensional hydrofoils with and the aerodynamic behaviors the elements are assumed to be 
independent of one another. The aerodynamic forces on the elements are calculated on the basis of 
local flow conditions. Total force and moment on the turbine are calculated by integrating the element 

forces along the wing span. 
In momentum theory (actuator disc theory), the work done by the air flow on the blade elements is the 
main cause of loss of pressure or momentum. The momentum losses in axial and tangential directions 

can be calculated using the induced velocities in the axial and tangential directions.  
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The geometry as well as the lift and drag characteristics of the rotor determine the capability of rotor to 

extract power from a moving fluid. Blending these two theories, BEMT is used to compute the 
capability of rotor to extract power from a moving fluid. Detailed information on BEMT can be found in 
Burton et al., 2001.  

The comparison of the WT_Perf predictions and the Risoe wind turbine test data is provided in Figure 
17. It is seen that the performance of WT_Perf is very good at low velocities  as expected. It is also 
observed that the performance of WT_Perf at the maximum power wind speed of 13.5 m/s is 

satisfactory. 
 

 
 

Figure 17: Comparison of the WT_Perf predictions and the Risoe wind turbine test data 
 

The random variables for Risoe wind turbine problem are listed in Table 16. All random variables are 

assumed to follow normal distribution, with the mean and standard deviation values given in Table 16. 
 

Table 16: Random variables for Risoe wind turbine problem 

Random variable Mean Standard deviation 

Turbine radius 9.5 m 0.01 m 

Rotational Speed 47.5 rpm 0.03 rpm 

Cut-in wind speed 4 m/s 0.1 m/s 

Root extension 2.3 m 0.01 m 

Blade set angle 1.8 degree 0.05 degree 

Maximum Twist 15 degree 0.5 degree 

Root Chord 1.09 m 0.01 m 

Tip Chord 0.45 m 0.01 m 

 
 

The reliability of the Risoe WT is first evaluated through Monte Carlo Simulation (MCS) with 
N=1,000,000 samples to provide a baseline for comparison for tail modeling predictions. A histogram 
is plotted for the calculated power values to observe its distribution type. The histogram of power for 

N=1,000,000 is given in Figure 18. As can be seen from Figure 18, the distribution type of the 
calculated power values is close to normal distribution. The calculated skewness and kurtosis values 
of power also support resemblance to normal distribution. Mean and standard deviation values of the 

calculated power values along with its skewness and kurtosis values are summarized at Table 17.  
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Figure 18: Histogram of power values for N=1,000,000 

 
Table 17: Mean, standard deviation, skewness and kurtosis values of the calculated power values  

Mean [kW] 105.8796 

Standard Deviation [kW] 1.4808 

Skewness 0.0273 

Kurtosis 2.9853 

 
From the MCS results, it is observed that 30 out of 1,000,000 samples fail, therefore the failure 

probability can be estimated as Pf=3x10
-5

. The corresponding reliability index for this value of failure 
probability is β=4.0128 (see Table 18). The confidence level due to limited MCS sampling is also given 
in Table 18. 

Tail modeling is finally applied to the reliability prediction of Risoe wind turbine. N=500 samples of 
each random variable are generated from the normal distribution and then limit state functions are 
calculated and sorted. The limit state function is calculated as; 

         
                                                                                (22) 

 
where y denotes limit state function, p is the power generated by WT and pcrit is 100 kW. In order to 
define the tail portion, threshold value of Ft=0.90 is used. Generalized Pareto distribution is fitted to the 

tail portion, scale and shape parameters are found and the corresponding reliability index values are 
calculated. The overall procedure is repeated for a 1000 times to reduce the effect of random 
sampling. Tail modeling predictions of reliability index are compared to MCS prediction in Table 18. It 

is found that the tail modeling method can predict this high reliability of the WT efficiently and 
accurately.  
 

Table 18: The reliability index values for Monte Carlo Simulation and Tail Modeling 

 N β  

Monte Carlo Simulation 1,000,000 
4.0128 

(3.97, 4.06)* 

Tail Modeling 500 4.1352 

 
*The confidence level due to limited MCS sampling 
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CONCLUDING REMARKS  

 
Reliability estimation using tail modeling is based on approximating the tail of the limit-state function’s 
cumulative distribution function. For a specified threshold value that defines the tail part, generalized 

Pareto distribution (GPD) is fitted to the tail part, scale and shape parameters are found and 
corresponding reliability index values are calculated. In this study, tail modeling is applied to 
benchmark mathematical example problems of varying number of random variables, nonlinearity level, 

coefficient variation and skewness. The threshold value for minimum RMSE is computed for all these 
problems. It is seen that the dependence of the proper threshold value on the number of variables, the 
coefficient of variation, R

2
 and skewness is very complex and far from being linear.  The proper 

threshold value is determined as Ft=0.90. 
Tail modeling is applied to reliability prediction of a horizontal axis wind turbine. The reliability 
predictions through tail modeling are compared to Monte Carlo simulation predictions to validate the 

tail modeling predictions. The reliability index prediction obtained from tail modeling is different from 
MCS prediction by 3%. This indicates that the tail modeling can accurately predict high reliability of 
HAWT. 
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