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ABSTRACT

This study reports static and dynamic aeroelastic analyses of an aircraft wing in an incompressible flow. A swept
thin-walled composite beam with a biconvex cross-section is used as the structural model that incorporates a
number of non-classical effects such as material anisotropy, transverse shear deformation and warping restraint.
A symmetric lay-up configuration i.e. circumferentially asymmetric stiffness (CAS) is further adapted to this
model to generate the coupled motion of flapwise bending-torsion-transverse shear. For this beam model, the
unsteady aerodynamic loads are expressed using Wagners function in the time-domain as well as Theodorsen
function in the frequency-domain. The divergence and flutter speeds are evaluated for several ply angles and
the results are consistent with the literature, such that the divergence speed is determined to be the most
critical speed for forward sweep configurations. The effects of transverse shear, fiber-orientation and sweep
angle on divergence and flutter instabilities are further discussed.

INTRODUCTION

There has been a growing interest in the development of the theory of thin-walled composite beams and
of their incorporation in various structures ranging from aeronautical/aerospace, automotive, helicopter and
turbo-machinery rotor blades, mechanical, civil to naval constructions in the last two decades (Librescu, L. and
Ohseop, S. [2006]). From a historical point of view, the theory of thin-walled beams goes back to late 1930s.
After the World War 2nd advanced efforts were made to this theory by publications of many books related to it
(Librescu, L. and Ohseop, S. [2006]; Oden, J. T. [1967]; Gjelsvik, A. [1981]). Several studies concerning linear
static and dynamic behavior of thin-walled composite beams of closed cross-section are contained references
(Vo, Thuc Phuong and Lee, Jaehong [2008a,b]). Haddadpour, H. and Zamani Z. [2012] recently reported the
aeroelastic design of composite wings modeled as thin-walled beams, in which the wing is optimized using a
linear spanwise variation of the fiber orientation for maximum aeroelastic instability speed purpose.

This study presents the aeroelastic analysis of an aircraft wing modeled as a thin-walled composite beam. For
this purpose, the structural and aerodynamic models are presented and combined to establish the aeroelastic
model of the aircraft wing. The static and dynamic aeroelastic analyses are simultaneously performed for the
thin-walled composite beam and the obtained results show good consistency with the literature. The influence
of directionality property of composite materials, transverse shear on the aeroelastic instabilities are presented.

STRUCTURAL MODEL

A cantilever beam of length L which is fixed at z = 0 and free at z = L is considered. The characteristic cross-
sectional dimension of the beam and the maximum wall thickness are represented by d and h, respectively.

∗Res. Assist. in Aeronautical Engineering Department, Email: durmazseh@itu.edu.tr
†Prof. Dr. in Aeronautical Engineering Department, Email: kayam@itu.edu.tr



AIAC-2013-077 Durmaz & Kaya

The kinematic variables associated with the Cartesian coordinate system of the beam are denoted by the
displacements and cross-sectional rotation which are u, v, w and ϕ . The beam model before and after
deformation is shown in Figure 1.

Figure 1: Beam geometry before and after deformation. Point S (before deformation) on the mid-contour
moves to S′ (after deformation) by translations of u, v and w along x−, y− and z−axes, respectively. ϕ is the
rotation of the cross-section.

Displacement Field

In this section, the displacement field of a composite thin-walled beam that undergoes extension, flapwise
bending, chordwise bending and torsion deflections is derived. Here, the Cartesian coordinate system is
represented by (x,y,z) while the coordinates of the curvilinear system is denoted by (n,s,zs). The in-plane
translations of point S(x,y) located at mid-contour, are described by u and v.

u(x,y,z,t) = u0(z, t)− yϕ(z, t) (1)

v(x,y,z,t) = v0(z, t)+ xϕ(z, t) (2)

Here, t is time, u0 and v0 are the displacements of pole point P, which is located at the origin (xP = yP = 0) and
ϕ(z, t) is the rotation of the cross-section. The tangential and normal displacement components associated
with the curvilinear coordinate system are ut and un, respectively.

The axial displacement accounting both for primary and secondary warping is given below,

w(s,z, t) = w0(z, t)+
[
y(s)−n dy

ds

]
θx(z, t)+

[
x(s)+n dx

ds

]
θy(z, t)

− [Fw(s)−nrt(s)]ϕ ′(z, t)
(3)

The primary warping function accompanied by the quantities off the mid-surface is updated as

Fw =
∫
C

[rn(s)−ψ(s)]ds (4)

Note that the secondary warping function is equivalent to nrt(s).

Strain Energy

Under the assumption of the cross-section deformability, the strain components εss, γnn and γsn were zero.
Thus, the beam cross-sections remain rigid in their own planes. With the non-zero strain components, the
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strain energy expression becomes

U =
1
2

L∫
0

∮
C

∫
h

[σzzεzz +σszΓsz +σnzΓnz](i) dndsdz (5)

The detailed derivation of strain energy expression is omitted in this extended abstract but it will be covered
in the full paper.

Kinetic Energy

The kinetic energy of the beam,

K =
1
2

∫
V

ρ(i)
(
u̇2 + v̇2 + ẇ2) dV (6)

Inserting the displacements u, v and w into the Eq. 6, we have

K = 1
2

∫
V

ρ(i)

{[
u̇P − (Y − yP)ϕ̇

]2
+
[
v̇P +(X − xP)ϕ̇

]2

+
[
ẇ0 +X θ̇y +Y θ̇x −Fw(s)ϕ̇ ′+nrt(s)ϕ̇ ′]2

}
dV

(7)

Here, X = x+n dy
ds and Y = y−n dx

ds . Expanding the terms in Eq. 7, a very lengthy expression will be obtained.
Carrying out the integrations through the wall thickness and around the mid-line contour, reduced mass terms
are introduced. This procedure contains a lot of laborious work which was overcome by using parametric
programming software, Mathematica.

Work Done by Aerodynamic Loads

The virtual work due to the unsteady aerodynamic loading can be expressed as follows:

δWe =

L∫
0

[Lae(z, t)δv0(z, t)+Mae(z, t)δϕ(z, t)] dz

where Lae and Mae are the unsteady aerodynamic lift force and twist moment. They are defined positive in
upward direction and nose-up condition, respectively.

STRUCTURAL COUPLING CONFIGURATION

Thin-walled composite beams have extensive usage in many engineering sciences; such as civil, naval and
aerospace. The application of the theory varies mostly depending on the geometry of the cross-section, i.e. it
is open or closed. The aircraft wing in this study is modeled as a thin-walled composite beam of a single-cell
closed cross-section. Due to the composite configuration, different cases of elastic couplings will be exploited.
Symmetric configuration also referred as circumferentially uniform stiffness (CAS), is adopted to the thin-walled
beam presented here, as a result various coupled vibration modes are exhibited. This symmetric configuration
is preferred to feature the vertical bending-twist coupling to model the flutter phenomenon. The ply-angle
distribution of CAS configuration is displayed in Figure 2. As seen from this figure, the closed cross-section
of the thin-walled beam only consists of the top and the bottom walls. On the other hand depending on the
geometry, in addition to the top and the bottom walls, the lateral walls may also be included, i.e. rectangular
cross-section. In the CAS configuration the ply angle distribution θ is an odd function of spanwise coordinate y,
which yields that the following stiffness quantities in the top (.)T and bottom (.)B layers appear with a negative
sign. This type of beam features two sets of independent couplings: i) extension-chordwise bending-chordwise
transverse shear coupling, ii) flapwise bending-flapwise transverse shear-twist coupling. As mentioned, due to
the interest of the present problem the second set of coupling is employed in this study.

AERODYNAMIC MODEL

Theodorsen developed a theory of unsteady aerodynamics for an oscillating thin airfoil in 1934. The lift and
the pitching moment at aerodynamic center are expressed by

Lae = CLα ρ∞UnbC (k)
[
−v̇0 +Unϕ +b

( 1
2 −a

)
ϕ̇
]
+πρ∞b2

(
−v̈0 +Unϕ̇ −baϕ̈

)
] (8)

Mac = −πρ∞b3
[
− 1

2 v̈0 +Unϕ +b
( 1

8 −
a
2

)
ϕ̈
]

(9)
3
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Figure 2: Lay-ups in circumferentially asymmetric stiffness configuration (CAS).

where ()′ and (̇) denote the partial differentiation with respect to the spanwise coordinate along the elastic
axis y and reduced time τ =Unt/b, respectively. Un is the free stream speed normal to the leading edge, CLα
is the lift curve slope and equal to 2π for thin-airfoil theory. v0 and ϕ represent the plunge displacement
and pitch angle of the beam. Here, the function C (k), known as Theodorsen’s function, is a complex valued
function of reduced frequency k in terms of Hankel functions. It is given by

Ck =
H(2)

1 (k)

H(2)
1 (k)+ iH(2)

0 (k)
(10)

The twisting moment along elastic axis is expressed as

Mea = Mac +
b
2

Lac (11)

Eventhough the Theodorsen theory is appropriate for classical flutter analysis, several situations need an alter-
native approach such as active flutter control, determination of modal damping in subcritical flight conditions
and limit cycle oscillations. One need to express the system in state-space form. To meet these requirements,
the aerodynamics loads have to be expressed in terms of the time-domain differential equations. Based on
strip theory and 2−D incompressible unsteady aerodynamics, the unsteady aerodynamic lift and moment
are expressed as follows: the lift and moment expressions of a thin-airfoil for an arbitrary small motion in
incompressible flow are given by

Lae (z, t) = −πρ∞b2ẇc/2 (z, t)

−CLα ρ∞Unb

w3c/4 (z,0)ϕw
(Unt

b

)
+

t∫
0

ẇ3c/4 (z, t0)ϕw
[Un

b (t − t0)
]

dt0

 (12)

Mae (z, t) = −πρ∞b3
( 1

2Unϕ̇ + 1
8 bϕ̈

)
−CLα

2 ρ∞Unb2

w3c/4 (z,0)ϕw
(Unt

b

)
+

t∫
0

ẇ3c/4 (z, t0)ϕw
[Un

b (t − t0)
]

dt0

 (13)

where reduced time is τ = Unt
b and ϕw(τ) is the Wagner’s function which satisfies the expression below,

dϕw(τ)
dτ

= L −1{C(p)} (14)
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where C(p) = K1(p)
K0(p)+K1(p)

Here, L −1 is inverse Laplace operator and p is the counterpart of τ in Laplace transformed domain. The
generalized Theodorsen function C(p) is described in terms of second kind of modified Bessel’s functions (Qin,
Z. [2002]; Gulcat, U. [2010]).

To cast the unsteady aerodynamic loads to state-space form, the quasi polynomial approximation is assumed
as here reduced time is τ = Unt

b and ϕw(τ) is the Wagner’s function which satisfies the expression below,

ϕw(τ) = 1−
n

∑
i=1

αie−βiτ (15)

An explicit expression of Wagner’s function does not exist although at subsonic speeds Jones approximation
can be used. It suggests a two term approximation with the coefficients α1 = 0.165, β1 = 0.041 and α2 = 0.335,
β2 = 0.320. According to Equations 12 and 13, the terms in square brackets are associated with the circulatory
part of the aerodynamic loads and here the Duhamel integral is rewritten as

D(z, t) =

t∫
0

ẇ3c/4 (z, t0)ϕw

[
Un

b
(t − t0)

]
dt0 (16)

Inserting Eq. 15 into 16 one gets

D(z, t) = w3c/4 (z, t)−
n

∑
i=1

αiBi(z, t) (17)

where

Bi(z, t) = e−βi
Unt

b

t∫
0

ẇ3c/4 (z, t0)e−βi
Unt

b dt0 (18)

Differentiating both sides of the Eq. 18 with respect to time t,

Ḃi(z, t)+
βiUn

b
Bi(z, t) = ẇ3c/4 (z, t) (19)

Here, Bi(z, t) are the functions that measure the lag in the induced aerodynamic loads Rodden, W. P. and
Stahl, B. [1969]; Qin, Z. [2002]. Thus, instead of evaluating the Duhamel’s integral, it is replaced by the
equivalent aerodynamic equations of motion given in Eq. 19

Finite-Span Effects

The previous derivation were performed using 2−D aerodynamic theory and the unsteady aerodynamic loads
was obtained for an unswept, infinitely long wing. This section points out several modifications made to 2−D
aerodynamic model in order to extend it to a 3−D one. Considering swept wings, the unsteady aerodynamic
loads are reconsidered to include this effect. To capture finite-span effects the lift curve slope CLα is expressed
by involving the corrections to the aspect ratio and sweep angle. The modified expressions are obtained to
account the finite-span effects (Bisplinghoff, Raymond L. and Ashley, Holt and Halfman, Robert L. [1996];
Qin, Z. and Librescu, L. [2003]; Qin, Z. [2002]):

C3D
Lα =

2πAR
AR+2cosΛ

(20)

and

b
2
→ b

2

(
CLα

π
−1

)
(21)

The unsteady aerodynamic loads given by Eqs. 12 and 13 are updated using Eqs. 20 and 21. If the wing
is assumed to be initially at rest, the explicit form of the unsteady aerodynamic loads are obtained in the
following.

Lae (z, t) = −πρ∞b2
[
v̈0 −Unϕ̇ +Unσ̇ tanΛ

]
−CLϕ

π ρ∞Unb
[
v̇0 −Unϕ +Unσ tanΛ− b

2

(
CLϕ

π −1
)(

ϕ̇ +Unχ tanΛ
)]

+
CLϕ

π ρ∞Unb
n
∑

i=1
αiBi

(22)

5
Ankara International Aerospace Conference



AIAC-2013-077 Durmaz & Kaya

Mae (z, t) = −πρ∞b3
[

1
2

(
CLϕ

π −1
)(

Unϕ̇ +U2
n χ tanΛ

)
+ 1

8 b
(
ϕ̈ +Unχ̇ tanΛ

)]
−CLϕ

2π ρ∞Unb2
[
v̇0 −Unϕ +Unσ tanΛ− b

2

(
CLϕ

π −1
)(

ϕ̇ +Unχ tanΛ
)]

+
CLϕ
2π ρ∞Unb2

n
∑

i=1
αiBi

(23)

Recall that the rates of change of bending and twist in spanwise coordinate are σ(z, t) = ∂v0
∂ z and χ(z, t) = ∂ϕ

∂ z ,
respectively.

AEROELASTIC EQUATIONS

In terms of displacement quantities, the governing aeroelastic equations of thin-walled composite beam under
flapwise bending-flapwise transverse shear-twist coupling are expressed as

a55 (v′′0 +θ ′
x)−a56ϕ ′′′+Lae = b1v̈0 (24)

a56 (v′′′0 +θ ′′
x )−a66ϕ ′′′′+a37θ ′′

x +a77ϕ ′′+Mae = (b4 +b5)ϕ̈ − (b10 +b18)ϕ̈ ′′
(25)

a33θ ′′
x +a37ϕ ′′−a55 (v′0 +θx)+a56ϕ ′′ = (b4 +b14)θ̈x (26)

with the boundary conditions

at z = 0:
v0 = ϕ = θx = ϕ ′ = 0 (27)

at z = L
a55 (v′0 +θx)−a56ϕ ′′ = 0 (28)

a56 (v′′0 +θ ′
x)−a66ϕ ′′′+a37θ ′

x +a77ϕ ′ =−(b10 +b18)ϕ̈ ′ (29)

a33θ ′
x +a37ϕ ′ = 0 (30)

a56 (v′0 +θx)−a66ϕ ′′ = 0 (31)

Here, ai j’s and bi’s are the elements of stiffness matrix and reduced mass terms. For their expressions one
should address to Ref. .

The structural model of the beam of biconvex cross-section had the length of L, width of b and maximum
thickness of h and the sketch of it was shown in Figure 3.

SOLUTION METHODOLOGY

To solve the nondimensional aeroelastic equations of thin-walled composite beams, a state space description
is required due to nonconservative nature of the eigenvalue problem. Second, using spatial semi-discretization
based on Extended Galerkin Method, the governing equations can be expressed in matrix form as follows(

MS +
1

µ0
MAE

)
q̈+

(
1

µ0
CAE

)
q̇+

(
krKS +

1
µ0

KAE

)
q = 1

µ0
Q (32)

where

q =

qv
qϕ
qx

 (33)

Q =

Qv
Qϕ
0

=
n

∑
i=1

αi
CLϕ

π



1∫
0

NvB̂idη

1
2

1∫
0

Nϕ B̂idη

0

 (34)

Here Θv, Θϕ and Θx represent the eigenvector matrices with dimension of N ×m and Θ =
[
ΘT

v ΘT
ϕ ΘT

x
]T
.

Using mode expansion theorem which was explained in Ref. (Meitrovich, L. [1997]; Qin, Z. [2002])

qv = Θvξs qϕ = Θϕ ξs qx = Θxξs (35)
6
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Figure 3: (a) Thin-walled beam geometry. (b) Bi-convex cross-section.

where ξs is the vector of first m generalized mode coordinates. Also, MS, KS and MAE , KAE denote the mass
and stiffness matrices for the structural and aerodynamic models, respectively. The damping is only considered
in aerodynamic model.

MS =

1∫
0

NvNT
v 0 0

0 ItNϕ NT
ϕ + IwN′

ϕ N′T
ϕ 0

0 0 r2NxNT
x

dη (36)

KS =

1∫
0


1

AR2 N′
vN′T

v
a56

a55L2AR N′
vN′′T

ϕ
1

AR N′
vNT

x

a56
a55L2AR N′′

ϕ N′T
v

a77
a55L2 N′

ϕ N′T
ϕ + a66

a55L4 N′′
ϕ N′′T

ϕ
a37

a55L2 N′
ϕ N′T

x + a56
a55L2 N′′

ϕ NT
x

1
AR NxN′T

v
a37

a55L N′
xN′T

ϕ + a56
a55L2 NxN′′T

ϕ NxNT
x + a33

a55L2 N′
xN′T

x

dη (37)

MAE =

1∫
0

NvNT
v 0 0

0 1
8 Nϕ NT

ϕ 0
0 0 0

dη (38)

CAE =

1∫
0


tanΛ
AR NvN′T

v +
CLϕ

π NvNT
v −

[
1+ CLϕ

2π

(
CLϕ

π −1
)]

NvNT
ϕ 0

CLϕ
2π Nϕ NT

v
tanΛ
8AR Nϕ N′T

ϕ − 1
2

(
CLϕ
2π −1

)(
CLϕ

π −1
)

Nϕ NT
ϕ 0

0 0 0

dη (39)

KAE =

1∫
0


CLϕ tanΛ

πAR NvN′T
v

CLϕ tanΛ
2πAR NvNT

ϕ − CLϕ tanΛ
2πAR

(
CLϕ

π −1
)

NvN′T
ϕ 0

CLϕ tanΛ
2πAR Nϕ N′T

v −CLϕ
2π Nϕ NT

ϕ − tanΛ
2AR

(
CLϕ
2π −1

)(
CLϕ

π −1
)

Nϕ N′T
ϕ 0

0 0 0

dη (40)

For simplicity, introducing the following matrices

Mn = ΘT
(

MS +
1

µ0
MAE

)
Θ Cn = ΘT 1

µ0
CAEΘ Kn = ΘT

(
krKS +

1
µ0

KAE

)
Θ (41)

The Eq. 36 is rewritten by the help of Eqs. 35 and 41

Mnξ̈s +Cnξ̇s +Knξs =
1

µ0

(
ΘT

v Qv +ΘT
ϕ Qϕ

)
(42)

7
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The right hand side of the Eq. 41 is rewritten in terms of the augmented state vector xai as follows

ΘT
v Qv +ΘT

ϕ Qϕ =
[
α1Im×m · · · αnIm×m

]
xa1
...

xan

 (43)

The augmented state vector fulfills the following equation which was given in 19.

ẋai +βixai = D1ξ̇s +D2ξ̈s (44)

where

D̂1 =

1∫
0

CLϕ tanΛ
πAR NvN′T

v −CLϕ
π NvNT

ϕ − tanΛ
2πAR

(
CLϕ

π −1
)

NvN′T
ϕ

CLϕ tanΛ
2πAR Nϕ N′T

v −CLϕ
2π Nϕ NT

ϕ − CLϕ tanΛ
2πAR

(
CLϕ

π −1
)

Nϕ N′T
ϕ

dη (45)

D̂2 =

1∫
0

CLϕ tanΛ
πAR NvN′T

v −CLϕ
π NvNT

ϕ − tanΛ
2πAR

(
CLϕ

π −1
)

NvN′T
ϕ

CLϕ tanΛ
2πAR Nϕ N′T

v −CLϕ
2π Nϕ NT

ϕ − CLϕ tanΛ
2πAR

(
CLϕ

π −1
)

Nϕ N′T
ϕ

dη (46)

D1 =
[
ΘT

v ΘT
ϕ
]

m×2N

[
D̂1

]
2N×2N

[
Θw
Θϕ

]
2N×m

(47)

D2 =
[
ΘT

v ΘT
ϕ
]

m×2N

[
D̂2

]
2N×2N

[
Θw
Θϕ

]
2N×m

(48)

State-Space Representation

The equation given in Eqs. 42 and 44 are cast to space-space form given in compact form as

Ẋ = AX (49)

where

X =

{
xs
xa

}
, A =

[
As Bs

BaAs Aa +BaBs

]
(50)

and

As =

[
0m×m Im×m

−M−1
n Kn −M−1

n Cn

]
2m×2m

(51)

Bs =

[
0m×nm

1
µ0

M−1
n

[
α1Im×m · · · αnIm×m

]]
2m×nm

(52)

Aa =

−β1I . . . 0
...

. . .
...

0 · · · −βnI


nm×nm

(53)

Ba =

[
D1 D2
D1 D2

]
nm×2m

(54)

Here, 0 and I show zero and identity matrices with dimensions of m×m. Using a temporal discretization to
Eq. 49, we have,

X(k+1) =
[
eA∆τ

]
X(k) (55)

where the discretized transition matrix [
eA∆τ

]
=

∞

∑
i=0

Ai

i!
(∆τ)i (56)

Here, A is the system matrix and ∆τ is the sampling time. Solving for X(k), one will extract the generalized
coordinate ξs(k) and one will finally obtain the aeroelastic response of the aircraft wing. The response functions
are

v̄0(η ,k) = NT
v (η) Θv ξs(k) (57)

ϕ(η ,k) = NT
ϕ (η) Θϕ ξs(k) (58)
8
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θx(η ,k) = NT
x (η) Θx ξs(k) (59)

Divergence and Flutter Instabilities

The static and dynamic aeroelastic instabilities of swept composite aircraft wings are simultaneously determined
using the Eq. 49. Discarding the time derivatives of the unsteady aerodynamics terms, the divergence instability
are found via solving the minimum solution of the following equation:(

krKS +
1
µ0

KAE

)
q = 0 (60)

Assuming X = X̄eλτ , the eigenvalue problem which corresponds to flutter condition is expressed as follows

(λ I −A) X̄ = 0 (61)

where λ ’s are the complex eigenvalues of the system given above. When the real part of λ becomes zero,
the imaginary part of the same root corresponds to flutter frequency. This critical state is known as flutter
condition.

RESULTS AND DISCUSSIONS

Throughout this section, several results for the thin walled composite beams are presented and discussed.
The geometric and material properties of beam models, namely Model A and Model B, are listed in Table 1
(Qin, Z. [2002]; Qin, Z. and Librescu, L. [2003]). Note that Model A is mainly used for flutter analysis, while
divergence analysis is carried out for Model B.

Table 1: Material properties and geometric characteristics of the wing.
Material Properties
E11 206.8 GPa
E22 = E33 5.17 GPa
G12 3.10 GPa
G13 = G23 2.55 GPa
ν12 = ν13 = ν23 0.25
Density, ρ 1528 kg/m3

Geometric Characteristics Model A Model B
Width, b (m) 0.757 0.259
Depth, d (m) 0.1 0.034
Total thickness, h (m) 0.01 0.0086
Length, L (m) 6.058 3.108
Aspect ratio, AR = 2L/b 16 12
Number of layers, N 6 7
Lay-ups [θ ]N [2θ/−θ/θ/0]s

At first, the dynamic analysis is conducted to compute eigenfrequencies and eigenvectors. Subsequently, using
the first 5 structural modes and 2 aerodynamic lag terms for each indicial function (m = 5, l = 2), the static
and the aeroelastic analyses are performed to obtain the aeroelastic instabilities.

Static Aeroelastic Analysis

As explained previously, the divergence speeds are calculated and several effects such as transverse shear, ply-
angle, aspect ratio on the divergence instability are addressed. It should be kept in mind that the aeroelastic
instabilities including divergence and flutter are simultaneously considered by the transient method.

Figure 4 indicates the combined effect of sweep and aspect ratio on divergence instability. Here, each curve
represent the variation of divergence speed with respect to aspect ratio (5 ≤ AR ≤ 15) for different sweep angle
configurations. These curves are obtained by an increase of 15o in sweep. As seen, the divergence speeds
reach to the lowest and the most critical value when (forward) sweep angle is high. The effect of ply angle is
also depicted in Figures 4(a) and 4(b) which are plotted for θ = 30o and θ = 45o, respectively.

Moreover, the effect of ply angle on divergence instability is demonstrated in Figure 5. As seen from this figure,
the washin effect for θ < 35o −40o yields lower divergence speeds and for 40o < θ < 90o, when the washout
effect is encountered, the divergence speeds are increased. This was previously reported that swept-forward
wings feature the washin/washout effects (Qin, Z. and Librescu, L. [2003]) and to address for these effects
one should refer to the coupling stiffness a37.
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Figure 4: Combined effect of sweep effect of sweep and aspect ratio on divergence speed of Model B for (a)
θ = 30o and (b) θ = 45o.
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Figure 5: Effect of ply-angle on divergence speed of Model B for Λ =−30o and Λ =−45o

Finally, the static aeroelastic analyses are also performed to illustrate the effect of transverse shear in Figure 6.
Here, solid and dashed lines show the results with and without transverse shear, respectively. As seen, when
the transverse shear is omitted, the divergence speeds are predicted lower.

Dynamic Aeroelastic Analysis

Test Case:

A computer code is developed in MATLAB to perform flutter analysis and tested with Goland wing. The
comparison with several published studies (Durmaz, S. and Ozgumus, O. and Kaya, M. O. [2007]; Patil,
Mayuresh J. and Hodges, Dewey H. and Cesnik, Carlos E. S. [2000]; Qin, Z. and Librescu, L. [2003]; Lin, J.
and Iliff, K. W. [2000]) is made in Table 2 which shows the flutter speeds in excellent agreement with the
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Figure 6: Effect of sweep on divergence speed of Model B for θ = 30o and θ = 45o.

present predictions.

Table 2: Comparison of flutter results for Goland wing.

Method UF (ft/s) ωF (rad/s)
Present analysis (EGM) 447 70.1
Durmaz et. al 2007 448 70.3
Patil et. al 2000 445 70.2
Qin and Librescu 2003 450 70.1
Lin and Iliff 2000 447 70.0

Flutter Analysis:

The flutter analyses are also conducted for the thin-walled beam of Model A (see Figure 7). At first, the
speeds are calculated by U-g method and transient method, and compared with the published results in Table
3. Here, the results are obtained by taking i) cLα = 2π and ii) cLα = 2πAR/(AR+2cosΛ), which are denoted
by superscripts Methodi and Methodii. As seen, finite-span effects play a crucial role in the accurate prediction
of the flutter results. Moreover the flutter speeds in both methods (U-g and Transient methods) are in good
agreement.

Table 3: Comparison of flutter results calculated by U-g and transient method.
Methodi UF (m/s) ωF (rad/s) U∞/

(
bωre f

)
U-g method 222.20 89.53 50.70
Transient method 221.60 91.33 50.55
Methodii UF (m/s) ωF (rad/s) U∞/

(
bωre f

)
U-g method 234.61 88.20 53.52
Transient method 234.57 89.30 53.52
U-g method Qin, Z. and Librescu, L. [2003] 235.00 87.58 53.74
Transient method Qin, Z. and Librescu, L. [2003] 235.05 87.12 53.75
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