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DEVELOPMENT OF AN EXTERNAL BALLISTIC SIMULATION SOFTWARE 

 

ABSTRACT 

A fully automatic external ballistic CFD analysis-simulation software is developed in C++ for the 
purpose of acquiring instant aerodynamic properties, particularly pressure based drag coefficient 

during the free flight of any intended flat based or boat tailed projectile. To eliminate any dependency 

on other commercial or third party software, a three-dimensional Computational Fluid Dynamics (CFD) 
analysis code is developed for the entire analysis process including a three-dimensional geometry 

modeler and surface mesh generator, an adaptively-refined Cartesian volume mesh generator and an 
Euler solver. 

INTRODUCTION 

Starting from 1850’s, external ballistic researches were continued by experimental studies mostly 

based on yaw cards [17]. In the first half of twentieth century, two World Wars occasioned substantial 

growth in these researches. After World War II, besides the development of supersonic wind tunnels 
and free flight spark photography ranges, computers started to be used for external ballistic 

applications. The first electronic general-purpose computer, ENIAC, was designed for solving external 
ballistic problems, during the World War II [16]. By 1970’s empirical codes have being developed 

which have been based on the experimental data accumulated for decades [3][11][14][15]. On the 

other hand, the advancements in numerical integration methods directed researchers towards the 
solution of 6 degree of freedom motion equations and CFD applications [5][10][13]. This paper 

presents a three-dimensional external flow CFD software specialized for low caliber external ballistic 
applications.  

 

GEOMETRY MODELLING AND SURFACE MESH GENERATION 

An automatic three-dimensional geometry modeler is developed for the first step of pre-processing 

part of the analysis. Considering any flat based or boat tailed projectile, the 2-D surface is assembled 
by four line segments and a circular arc, as shown in Figure 1. These segments represent the kurtosis, 

ogive, cylinder, boat tail and base sections of the projectile, respectively. 

 

Figure 1: 2-D projectile schematic view 
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Software user is supposed to specify the geometric features of the intended projectile as ogive length, 
ogive radius, ogive center offset, cylinder length, cylinder diameter and tail length in calibers and tail 

angle in degrees. Primarily, the specified geometric features are used for drawing 2-D outline of the 

projectile. Then by revolving the outline 360o around x-axis, the 3-D surface model of the projectile is 
obtained. Revolving process produces two circular surfaces at the nose and base, and three quasi-

cylindrical surfaces covering the sides of the projectile (Figure 2a). In order to mesh these five 
generated surfaces, two different surface meshing algorithms are developed for circular and frusto-

conical, cylindrical surfaces. The surface mesh generating algorithm has the ability of refining mesh on 

any intended surface (Figure 2b, 2c). Optimum mesh intensity is essential for catching the inclination 
on curved surfaces and reducing time consumption at Cartesian volume mesh generation process. 

 
Figure 2: (a) 3-D surface model, (b) coarse and (c) fine surface meshes of G7 type projectile 

 

CARTESIAN VOLUME MESH GENERATION 

Cartesian mesh is a type of unstructured mesh which is very attractive and popular recently.  Several 

advantages of this mesh provide this popularity and widely usage. First of all, Cartesian mesh uses the 
advanced and complicated data structures as Quadtree in two-dimensional and Octree in three-

dimensional space. These data structures make mesh generation very easy and flexible even for 

complex three-dimensional geometries. Flexibility in mesh generation leads to a great advantage for 
mesh refinement, coarsening and multigrid applications. Another advantage of the Cartesian mesh is 

the monotomy of the cells. Monotonous cells provide convenience to the area, volume and flux 
calculations and eliminate the skewness problems as seen in structured and unstructured meshes. 

On the other hand, the main disadvantage of Cartesian meshes is handling the cells which are 

interacted with the surface of the geometry. Forming these irregular cut and split cells can be 
compelling and troublesome. The other disadvantage is, after the creation of cut and split cells, the 

volume of these irregular cells can be extremely small with respect to outer cells. The hazards of this 
kind of problem can be eliminated by cell merging techniques. Cartesian mesh is not allso sufficient 

for viscous flow solutions but can be used by hybridization with structured boundary layer mesh [1]. 

Octree Data Structure and Root Cell 

Dynamic Octree data structure is used for the developed three-dimensional Cartesian mesh generator 

and Euler solver. Dynamic data structure allocates memory depending on the situational needs and 
removes unnecessary data from the memory during the execution of the software. This type of data 

structure makes mesh refinement and coarsening very practical since the refinement and coarsening 
processes are extremely solution dependent. Dynamic allocation brings great utility to the developed 

code by increasing the efficiency of the memory usage. 

Octree is a tree-type data structure and mostly used to discretize the three-dimensional space into 
eight octants. It starts with the undivided cubic space which is called the root cell and it subdivides 

into eight equal volumes of cubes for multiple times. Figure 3 represents Octree data structure used 
for the Cartesian mesh. Subdivision process of the root cell continues until the desired level of 

divisions is reached and the flow variable computations take place in the highest level divisions of the 

root cell. Therefore, if a cell is subdivided into eight octants, it is no longer flagged as computational 
cell and it acts as a bridge between its children, parent and neighbor cells. 

The most important attribution of Octree data structure is the relativity between all cells, from the 
root cell to computational cells. Connectivity between cells is carried out by parent, neighbor and child 

relativity variables. The bonds between Octree elements are crucial for safety of the mesh generation 

a (c) (b) (a) 
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and the information transfer between neighboring cells for two or more order solutions. Besides the 
flow variable information, cells in Octree data structure hold information of cell relativity and mesh 

properties. These variables that are kept within a cell structure are listed on Table 1. 

 

Figure 3: Octree data structure 

Since the root cell is the undivided initial cell, it also defines the flow domain around the projectile. 

Placing the projectile at the center of the root cell, edge length of the root cell is chosen 20 times 

larger than the projectiles chord length. For the external flow CFD analysis for projectiles, flow domain 
boundaries must be far enough from geometry surface so that disturbances in flow variables do not or 

weakly reach to the domain boundaries for the safe application of the far-field boundary condition. 

Uniform Mesh Generation 

Uniform mesh generation is the subdivision of the root cell to desired level of computational cells. 
After the subdivision of the root cell, eight children cells are formed and these cells are connected to 

the root cell by parent-child relationship. Child cell formation process starts by creating eight new cell 

structures and defining their corner and center coordinates. Indexing these new eight cells is very 
important for setting neighbor relationships as presented (Figure 4b). 

Table 1. Octree variable list for a Cartesian cell 

Number of 

variables 

Representation of 

variables 

8 Corner coordinates 

1 Center coordinate 

1 Division level 

1 Computational cell flag 

1 Parent cell 

6 Neighbor cells 

8 Child cells 

1 Type 

Neighboring relationships for each created child cell are set during the uniform mesh generation 

process. Since the child cell indexes are fixed within a parent cell, neighbor indexes are fixed as well. 
To give an example, in Figure 4c, east, south and bottom neighbors of 6th child cell are 5th, 7th and 2nd 

child cells of the same parent cell, respectively. But the west, north and top neighbors are not child 
cells of the same parent cell. These cells are connected to each other by neighboring relationships of 
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their parents. 5th child cell of the west cell of the parent of the 6th cell is always west neighbor of this 
cell and the same procedure is followed for the north and top neighbors. 

 

             

Figure 4: (a) Corner and edge, (b) child cell and (c) neighbor indexing 

 

Geometry Fitting to Uniform Mesh 

At the end of uniform mesh generation process, the projectile geometry must be fit into the uniform 

mesh. This fitting procedure is the most complicated part of the Cartesian mesh generation. The 
procedure is basically, extracting the solid volumes within the Cartesian cells which are interacted by 

the projectile geometry and changing their cubic shapes, volumes and center coordinates, creating 
new cut surfaces.  

Cell Type Specification 

Geometry fitting into generated uniform mesh starts by identifying types of the computational cells by 
ray-casting method. There are three types of cells defined for the Cartesian mesh. If all corners of a 

cell are inside the projectile surface, the cell is referred as an inside cell, if all corners are outside of 
the body than the cell is called an outside cell and if some corners are inside and some of them 

outside than this type of cell is called a cut cell. For a Cartesian mesh, there is an extra cell type called 

as a split cell which is a very complex form of the cut cell and difficult to handle in three-dimensions. 
However, simplicity of the projectile shapes prevents this type of cell formation. Example 

configurations of cut and split cells are given in Figure 5. 

To identify the types of Cartesian cells in uniform mesh, ray-casting method is used for determining if 

the cell corners are inside or outside of the projectiles volume. Considering each corner of a cell as ray 

sources, rays are sent in +x, +y, +z and -x, -y, -z directions, reaching to boundaries of the flow 
domain. The aim of this procedure is the count of the ray-triangle intersection for each ray which 

specifies inside-outside properties of the corners by ray-triangle intersection algorithms in three-
dimensional space [6][9]. Figure 6 shows ray-casting method on a coarse surface mesh of G7 type 

projectile. 

(a)        (b) 

Figure 5: (a) Cut and (b) split cell examples 

Considering P1, P2 and P3 points as the corner points of any Cartesian cell, blue rays starting from 
these points and continuing along -y direction intersect 0, 2 and 1 surface triangles, respectively. If a 

 

(a) 
 

 

(b) 
 

 

(c) 
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ray source is outside of the projectile, than the rays emitting from it, must intersect 0 or 2 surface 
triangles as P1 or P2 and if the source is inside of the projectile than the rays must intersect 1 surface 

triangle. After specifying inside-outside properties of all corners of all Cartesian cells, all Cartesian cells 

are categorized as inside, outside or cut cell. 

 

Figure 6: Ray-casting method on a coarse surface mesh 

 

Cut Cell Creation 

For each identified cut cell, creating cut surfaces resulting from surface intersections is the main part 
of the geometry fitting into a uniform Cartesian mesh. Several methods can be applied to achieve this 

such as marching cubes [18], marching tetrahedrals or exact fitting [8]. For the developed code, 

marching cubes method is used for cut cell surface and volume creations. 

First step of the Marching Cubes algorithm is calculating cube indexes of all cut cells. Cube index is an 

integer value used for Marching Cubes table which reserves the information of which edges of the cell 
are cut, how many cut surface triangles describe projectile surface and location of corners of these 

triangles. Cube index of a cut cell is calculated by using inside corner indexes by the pseudo code 
given below. 

 cube_index=0 

 for corners from 0 to 7   

 cube_index=cube_index+2index_of_inside_corner 

For the cut cell configuration given in Figure 5a, since the only inside corner is the corner indexed as 

1, cube index of this type of cut configuration is 2. In Table 2, first 6 out of 256 lines of the Marching 
Cubes table are presented. Following the third line (table starts from 0th line), up to the first -1 value, 

total count of non -1 integer values divided by 3 gives the triangle count representing projectile 

surface inside cut cell and for this case, it is 1. These three non -1 values indicate cut cell edges which 
cut cell triangle corners stand. The information that Marching Cubes table provides is also used for 

volume and centroid calculations of cut cells and also flux calculations from cut surfaces. 

 

Table 2: First six rows of triangle table [2] 

-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 

0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 

1, 9, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 

1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 

2, 10, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 

0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 
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Geometric Adaptations 

Uniform mesh generation is the first set of divisions for creating a coarse mesh and adapting it to the 

projectile geometry. For avoiding cells with unnecessarily large volumes which are also close to flow 

domain boundaries, uniform mesh is limited to a maximum of three or four levels. However, after the 
third or fourth division, the cell resolution close to external flow geometry is comparably low to get 

precise results. Mesh intensity is increased for intended flow regions by geometric adaptations during 
the mesh generation and solution adaptation during the flow solution processes. 

Essentially, mesh adaptation is the refinement of Cartesian cells, increasing their division levels by 

subdividing them into their child cells. Two types of geometric refinements are applied in the code. 
First adaptation is the box adaptation which is the method of increasing division level of cells to an 

intended value, within a specified box volume. The boundaries of this box are properly selected for 
external flow analysis. Second adaptation is called as the cut cell adaptation, which is achieved by 

subdividing cut cells until the desired level of computational cells are obtained. Figure 7 shows the 
applied forms of both geometric adaptations on projectile for supersonic flow analysis.  

     

 

Figure 7: Geometric adaptations on G7 type projectile. 

FLOW SOLVER 

Three-dimensional, steady-state, inviscid and compressible flow solver (Euler Solver) is developed for 
the solution of Euler equations. Equations are discretized spatially by using cell centered finite volume 

method. Liou's Advection Upstream Splitting Method (AUSM) is applied for flux calculations between 
neighboring Cartesian cells and first-order spatial accuracy is used for conserved variables in the flux 

calculations. Solution adaptation is used for capturing shock waves, expansion waves and wake region 
where gradients of primitive flow variables are relatively high. 

Euler Equations 

Three-dimensional compressible Euler equations can be represented in the conserved form as 

0




AV

dAndV
t


FU         (1) 
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where U  is the vector of conserved variables and n


F  is the vector of fluxes calculated throughout 

cell surfaces. A  and V  are the area and the volume of related surface and the cell, respectively. 

Considering the surface normal vector as knjninn zyx


 , 

 TEwvu  ,,,,U         (2) 

 Tx uHuwuvpuu  ,,,, 2 F        (3) 

 Ty vHvwpvuvv  ,,,, 2 F        (4) 

 Tz wHpwwvuww  ,,,, 2 F        (5) 

where,   is the density, u , v  and w  are the velocity components in x , y  and z  directions, 

respectively, E  is the specific total energy, H  is the total specific enthalpy and p  is the static 

pressure of the air. In these equations, E  and H  are functions of u , v , w ,   and p  and 

thermodynamically related to these parameters. 

Spatial Discretization of Euler Equations 

The methodology used for solving integral forms of the Euler equations is cell centered finite volume 

method. Taking the integral of the 



V

dV
t

U  term in Equation (1) 

t
VdV

t
V











U
U          (6) 

and integrated from of the n


F  term in Equation (1) is 





nFace

i

ii

A

AdAn
1

F̂F


         (7) 

where, F̂  term is the fluxes perpendicular to the surface. Combining Equations (6) and (7) 







 nFace

i

ii A
Vt 1

ˆ1
F

U
         (8) 

where the term 


nFace

i

ii A
1

F̂  is referred to as residuals (  UR ) of the cell and they are functions of 

conservative variables, U . 

Temporal Discretization of Euler Equations 

For the temporal discretization of Euler equations, 2nd stage Runge-Kutta multi-stage time stepping 

method is applied to the Equation (8). 

n
UU 0

          (9) 

 0

1

01
URUU

V

t
          (10) 

 1

2

12
URUU

V

t
          (11) 

21
UU n

          (12) 
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In Equations (10) and (11), t  is the time step,  ’s are the stage coefficients and selected as 

4361.01  and 0.12  [2]. Explicit time integration formulation is used, Equations (9) and (10) 

point that the Residual term is calculated using the previous steps conserved variables. 

AUSM Flux Vector Splitting Scheme 

The AUSM scheme uses the split form of Mach number and pressure terms to calculate the fluxes 

throughout cell surfaces [12].  

           
2

1
2

1
2

1
2

1ˆ pMM 





  LRRL UFUFUFUFUF     (13) 

In Equation (13), 
2

1M  and 
2

1p  are the split Mach number and pressure term and they are functions 

of left and right side values. 

 THcwcvcucc  ,,,,F        (14) 

where, c  is the speed of sound and 

   RL MMM
2

1

2
1           (15) 

   RL ppp
2

1

2
1          (16) 

where 

 

 

 












1>
2

1

11
4

1 2

MMM

MM
M        (17) 

 






 

 

1>
1

12

M
M

MM

pMp        (18) 

Boundary Conditions 

Ghost cell method is used for the application of two different boundary conditions. Ghost cell is a 

mirror-image cell with equal volumes and the symmetry surface is the boundary. For the case of 

external flow of a projectile, the first boundary condition that is applied to the boundary faces of the 
root cell is far-field boundary condition. During the uniform mesh generation process, the cells that 

have one or more face on root cell face were flagged as cells at far-field boundary. The second 
boundary condition is the wall boundary condition which is applied to the cut cells. Figure 8 shows 

schematic view of wall boundary condition application by using a ghost cell. For the far-field boundary 

condition, variables defined at ghost cell center are the free stream values of the projectile at any 
certain time after the projectile leaves the gun. Moreover, for the wall boundary condition, these 

variables are exactly the same as the neighboring cut cell values expect the normal component of the 
velocity vector, which is defined as the same magnitude and opposite direction at the ghost cell 

center. This definition leads to the normal component of the fluid velocity to be zero at the projectile 
surface.  

Solution Refinement 

Mentioned in the previous sections, solution refinement is one of the important features of the 
Cartesian mesh. High definition solutions can be achieved by the fine initial mesh structure but this 

approach greatly decreases the efficiency of the analysis, additionally, excessively time and memory 
consumption. On the other hand solution refinement approach is basically subdividing computational 

cells at a certain time of solution, when the gradients of flow variables are large.  
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Figure 8: Ghost cell wall boundary condition 

The criteria used for the developed code is based on the curl of the velocity for detecting shear layers 

and the gradient of the velocity for detecting shock waves [4]. These criteria which also depend on 

the volume of cell are given by 

   5.0VDiv V          (19) 

   5.0VCurl V          (20) 

where V  is the volume of a cell. When the standard deviations of divergence and curl variables 

exceeds the predefined values, the cells having these deviations are flagged to be refined before 

moving to next time step. The flagged cells are refined and the projectile geometry is fitted to the 
refined Cartesian mesh structure. 

RESULTS 

The aim of developing this CFD tool is to obtain the pressure based drag force and drag coefficient 

which have the greatest impact on reducing the flight speed of any intended projectile for direct 

shooting. Considering that, a low caliber projectile leaves the gun barrel at a Mach number about 3, 
the most of speed reduction occurs at supersonic speeds. Therefore, after the convergence of the 

numerical solution of Euler equations, code is specialized for computing the pressure based force 
acting in the longitude direction of the projectile. Using the reference area of the intended projectile 

and free stream density, axial drag coefficients are calculated for G7, G3 types and 105mm projectiles 

at different Mach numbers and compared with experimental results available in the literature. 

Convergence criterion is selected as 10-7 for all tests and DC  convergence is also ensured. 

 

Figure 9: Residual and DC convergence histories of G7 type projectile for 90.2M  
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Figure 9 shows the convergence histories of average of residuals and DC  at a free stream Mach 

number of 2.90. Figures 10 and 11 show the solution adapted mesh with Mach contours and pressure 

contours on the projectile surface at 90.2M , respectively.  

Figures 12, 13 and 14 compare the DC  values which are obtained numerically by the developed 

software and experimental data for G7, 105mm and G3 respectively. Experimental values for 105mm 

and G3 cases are supplied by The Machinery and Chemical Industry Institution (MKEK), Ankara, 

Turkey. 

 

Figure 10: Mach contours and solution adapted mesh of G7 type at 90.2M  

 

Figure 11: Pressure contours on G7 type projectile surface at 90.2M  
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Figure 12: Drag coefficient numerical and experimental values for G7 type projectile [7] 

 

 

Figure 13: Drag coefficients for a 105mm projectile of the present study compared with the 
data supplied by MKEK 

 

 

Figure 14: Drag coefficients for a G3 type projectile of the present study compared with the 

data supplied by MKEK  
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CONCLUSION 

Reviewing the result for three different projectiles, it can be concluded that the Euler solver gives 

accurate pressure based zero yaw drag coefficient for different flight Mach numbers in the range of 

leaving barrel and hitting target. For supersonic and some of transonic flow cases, the highest error is 
below 4% and mostly around 2%. It is also observed that getting closer to the Mach number of 3, 

error increases due to the change in the flight conditions towards the hypersonic flow. On the other 
hand, reaching to subsonic region also increases the error. Since the boundary layer and viscous 

effects scale up and flow considered as incompressible in this region, analysis exceeds the capacity of 

the developed compressible, inviscid flow solver. For the flow regimes around a Mach number of 0.80, 
the highest error observed to be about 12%. 

This CFD software, from pre-processing to post-processing, has been developed and specialized for 
low caliber direct shooting applications. Recently, one of the most popular methods, Cartesian mesh 

structure, is used and software has great potential for future developments. More advanced geometry 
fitting procedures can be applied to the developed Cartesian mesh generator to enhance its geometry 

complexity scale and involve more complicated, rocket engine systems included external ballistics 

applications. Additionally, incompressible or compressible, viscous or hypersonic flow solvers can be 
included by using Cartesian mesh technology basement.  
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