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ABSTRACT 

The dynamic response of the Functionally Graded Material (FGM) plates under explosive blast loading 

is investigated. In this study, the mechanical properties such as the density, the modulus of elasticity, 
Poisson’s Ratio, the thermal expansion coefficients are all assumed to be temperature dependent. 
The FGM plate is considered as a clamped thin plate. The Classical Plate Theory (CPT) is used for 

the structural formulations. The nonlinearity is considered as von Karman type. The FGM plate is 
subjected to explosive blast loading. Blast pressure is assumed to be uniformly distributed on the top 
surface of the FGM plate. Dynamic displacement responses of the FGM plate for different loadings, 

temperature and material parameters are investigated.   
 

INTRODUCTION 

The FGMs are new generation advanced composite materials whose mechanical properties are 
graded in certain directions. They have advantages over the classical laminated composite materials 
at the interfaces and boundaries since the FGMs have the continuous mechanical properties. They 

are inhomogeneous, but isotropic. The FGM plates are usually used in a high temperature 
environment where one constituent (usually ceramic) is used as a thermal barrier and other 
constituent (usually metal) is used for strength and flexibility. There have been intensive investigations 

and researches on the FGM plates since they were first introduced in Japan a few decades ago. The 
extensive studies on the FGM plates based on the different high order plate theories are made by 
[Shen, 2009]. Reddy and his colleagues presented the analysis of the FGM plates and cylinders 

based on the first order plate theory and third order plate theory [Reddy, 2000; Praveen, Chin and 
Reddy, 1999; Praveen and Reddy 1998; Lee, Zhao and Reddy,2010]. Nonlinear bending responses of 
functionally graded plates subjected to transverse loads and in thermal environments  are presented by 

[Shen, 2002]. Dynamic response of initially stressed functionally graded rectangular thin plates by 
using the classical plate theory is presented by [Yang and Shen, 2001]. Responses of rectangular 
laminated composite plates and sandwich plates to explosive blast loadings are investigated by 

[Librescu, Oh, and Hohe, 2004; Beshara, 1994; Librescu and Nosier, 1990].  

 

In this study, the response of the FGM plates subjected to blast loading is investigated. Temperature 

dependency of mechanical properties of constituents is taken into consideration. Blast load is 
assumed to be uniformly distributed on the FGM top surface. The modified Friedlander exponential 
decay equation is used for blast loading. Nonlinear displacement responses of the FGM plates to blast 

loadings and temperatures are examined.  
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FORMULATION 

 

Equation of Motion 

The equation of motion for the FGM plate shown in Figure 1 in terms of the normal deflection 

( , , )w x y t  and the stress function ( , , )F x y t  can be written as [Dogan, 2013] 
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and the compatibility equation is given as 
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where the mass inertia terms are 
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where is the density of the plate, c is the viscous damping coefficient, ( , , )p x y t is the pressure on 

the plate due to explosive blast.   

The reduced stiffness matrices are defined as  

1[ ] [ ]ij ijA A            (4) 

1[ ] [ ] [ ]ij ij ijB A B           (5) 

1[ ] [ ] [ ][ ] [ ]ij ij ij ij ijD D B A B          (6) 

and where 'ijA s  are the extensional stiffness, 'ijB s are the bending-extensional stiffness, and 'ijD s  

are the bending stiffness, in their usual usage. 
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All material properties are assumed to vary through the plate thickness only according to a power-law 

distribution and temperature T  as [Shen, 2009, Praveen and Reddy, 1998] 

2
( , ) ( ) ( ( ) ( ))
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where  
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where 0P , 1P , 1P , 2P  and 3P  are the coefficients of temperature T( inK )  in the cubic fit of the 

material property. 

The thermal force and moment resultants are 
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where T is the temperature change from a stress free state, is the thermal expansion coefficient. 

It is assumed that plate is clamped along four edges with immovable ends. While in-plane boundary 

conditions are satisfied on average, the normal boundary conditions are satisfied exactly by the 
following assumed solution  

,

( , , ) ( ) (1 cos( )) (1 cos( ))mn m n

m n

w x y t W t x y       (10) 
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m

2 m

a
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n

2 n

b
        (11) 

 

As a solution procedure, the stress function is first obtained by substituting Eq. (10) into Eq. (2). The 
stress function and assumed deflection function then both inserted in Eq.(1), and Galerkin method is 

employed to obtain the ordinary differential equations in time domain for ( )mnW t . These coupled 

nonlinear ordinary differential equations are solved numerically by using Runge-Kutta method. 

                     

Explosive Blast Loading 

If the detonation center of explosive is far from the plate and the dimensions of the plate are small 

compared to that distance, the pressure distribution on the top of the plate can be assumed to uniform.  

The blast overpressure can be written in terms of the modified Friedlander exponential decay equation 
with both negative and positive phases of the blast.as [Librescu, Oh, and Hohe, 2004; Beshara, 1994; 

Librescu and Nosier, 1990; Gupta, Gregory, Bitting and Bhattacharya, 1987]   

/
( , , ) ( ) ( / ) pt t

m pp x y t p t p 1 t t e         (12)  

where pt is the positive phase duration of the impulse measured from time of arrival of the blast at the 

plate surface, mp is the peak reflected pressure in excess of the ambient, is the decay parameter, 

and t  is the elapsed time. 

 

NUMERICAL RESULTS AND DISCUSSION 

 

The FGM plate geometry, coordinate system and loading are shown in Figure 1. Following dimensions 

are used in numerical examples: the plate thickness .h 2 5mm ; the widtha b 500mm . The 

FGM plate composed of titanium alloy Ti-6AL-4V (as metal) and zirconia ZrO2 (as ceramic) is 

considered.  For explosive blast loading, following values are used:, mp 20 kPa , .pt 0 005 sec, 

.0 3  (unless otherwise stated). The response is computed at the center of the plate (i.e., x a 2 , 

y b 2).  
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Figure 1: FGM plate geometry, coordinate system and loading 

 

Nonlinear displacement history of the FGM plate to blast loading is given in Figure 2. The normalized 

maximum (peak) value of the displacement is max( / ) .w h 5 635  at . st 0 0013 , and the minimum 

(valley) value is min( / ) .w h 5 501  at . st 0 0165 . It is obvious that the response is highly 

nonlinear reaching the several times the thickness in very early phase of the history , then the 
response is damped out quickly to the rest position within 0.25 seconds.  
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Figure 2: Displacement-response history ( .n 0 7 ) 
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The response of the plate at uniformly elevated temperature ( T 300 K ) under the same blast 

loading is plotted in Figure 3. The stress free reference temperature is assumed to be 0T 300 K .  In 

this case, the maximum and minimum responses are max( / ) .w h 11 504 at . st 0 0012  and 

max( / ) .w h 10 559  at . st 0 012 , respectively. After the FGM plate response reaches its 

maximum (peak) value in the early stage of the history, it moves to opposite side and continues to 
vibrate about the buckled position with decreasing amplitude due to damping. The similar response 

with smaller peak values is obtained for blast loading at linearly varying temperature through the 

thickness as shown in Figure 4.  In this case, the top face temperature is tT 600 K  and the bottom 

face temperature is bT 400 K , the variation of temperature from top to bottom is linear.  These 

results indicate that presence and variation of temperature greatly affect the displacement response. 
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Figure 3: The displacement response history at uniformly elevated temperature 

( T 300 K , .n 0 7 ) 
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Figure 4: Displacement response history at linearly elevated temperature  

( tT 600 K , bT 400 K , .n 0 7 ) 
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Figure 5: Displacement response history for different mixture parameters  

at linearly elevated temperature. ( tT 800 K , bT 400 K ). 
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It is well known that the FGM plates are generally used, at thermal environment, for high mechanical 
loading. Constituents of the FGM mixture can be tailored upon the system requirements. When the 

material parameter (index) n is large, a metal rich FGM plate is obtained; on the contrary, when n  is 

small, a ceramic rich FGM plate is obtained. Figure 5 illustrates the influence of the material mixture 
parameter, n , on the response at linearly elevated temperature.  
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