DESIGN OF AUTONOMOUS UNMANNED AERIAL ROBOTIC VEHICLE FOR THE INTERNATIONAL FUTURE FLIGHT DESIGN (FFD) COMPETITON-2013

Dilek BAŞARAN BİL Middle East Technical University Mechanical Engineering Department & ANKARA MODEL PLANE CLUB

CONTENT

- Objective & Missions
- Rules & Requirements of FFD-2013 Competition
- Design Phase of Autonomous UAV
- Production Phase of Autonomous UAV
- Flight Tests and Performances
- Lessons Learned
- Conclusion

23.09.2013

OBJECTIVES & MISSIONS

The primary objectives:

- \checkmark To design and produce a <u>modular</u> UAV,
- ✓ To control UAV manually with Remote Control (R/C),
- ✓ To perform <u>autonomous flight including autonomous take off & landing</u>,
- \checkmark To reach a fire zone in the flight arena by performing necessary manevours,
- ✓ To leave the water bottles with parachutes over the intended area safely
- \checkmark To return back to the initial start line safely.

There are 3 different mission categories in FFD-2013 competition called as

- Mission I (Remote Control Mission)
- Mission II (Remote Control Mission)

Mission III (Autonomous Mission with autonomous landing and take off) A completely original radio-controlled aerial vehicle was designed and constructed for Mission I and Mission II and an original autonomous air vehicle was designed and constructed for Mission III.

The overall score of the competition is calculated to take into account the modularity, timing as well as all the scores of each missions according to their importance.

Appretiated!

Very complex, intelligently designed and optimum formula was generated by Turkish Airforce Academy to evaluate the overall score of each competitors in FFD-2013.

RULES & REQUIREMENTS

- Battery packs must weight less than 3 kg.
- All flight hardware must fit in a rectangular prism case. No other case shape will be accepted.
- The assembly and checkout time must be completed in less than 5 minutes.
- The design should be modular to get the higher scores.
- As payloads, common type of 500 ml bottle of water is used. Maximum 4 bottles are loaded.

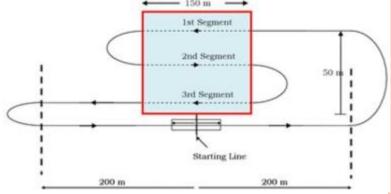
The number of payloads for each mission is as given below:

- For mission #1, one bottle payload is required.
- For mission #2, four bottles payload are required.
- For mission #3, three bottles payload are required. For this mission, the payloads should land with parachutes and a successful landing means no leakage on the bottles.

MISSION RULES & REQUIREMENTS

According to the flight pattern, the details of each mission and general specifications can be stated as:

Mission#1

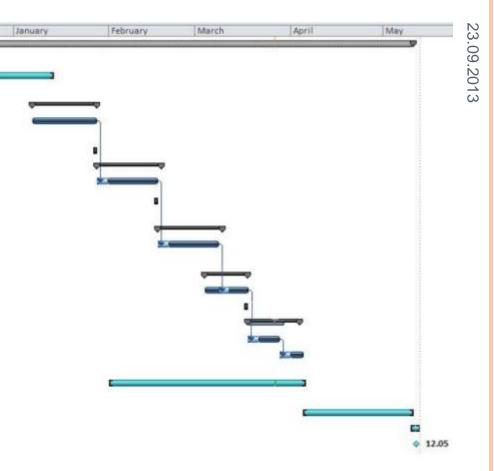

- Mission#1 includes a flight with one-bottle payload and the flight pattern is given in Figure.
- 2-Lap ferry flight is required. Second lap is complete when the aerial vehicle passes the start/finish line while still in the air.
- The time is taken from the start of the hand launch to completion of the second lap for mission #1.

Mission#2

- It includes a flight with 4-bottle payload and the flight pattern is given in Figure.
- 1-Lap flight is required. The lap is completed when the aerial vehicle passes over the start/finish
 line while still in the air.
- Time will begin with the aerial vehicle on the start/finish line and time will end when mission is completed. Time contains payload loading and flight.
- The aerial vehicle will be "safe" (fuse removed) during the loading.

Mission#3

- It includes a flight with 3-bottle payload to the target area and dropping them in order (in each flight segment) inside the target area.
- Payload is landing with a parachute.
- A successful landing means no leakage on the bottle.


23.09

3

c∛er

SCHEDULE

Task Name 🔹	Start	+	Finish	Decembe
Design, Build and Fly	Sun 23.12.12		Fri 10.05.13	
Start of FFD2013	Sun 23.12.12		Sun 23.12.12	
Organisation and Task Planning Phase	Sun 23.12.12		Sun 13.01.13	
Conceptual Design Phase	Mon 07.01.13		Sun 27.01.13	1
Literature Survey and Conceptual Design Phase	Mon 07.01.13		Sun 27.01.13	
End of Conceptual Design	Sun 27.01.13		Sun 27.01.13	1
Preliminary Design Phase	Mon 28.01.13		Sun 17.02.13	
Preliminary Design	Mon 28.01.13		Sun 17.02.13	1
End of Preliminary Design	Sun 17.02.13		Sun 17.02.13	
Preregistration for Competition	Mon 25.02.13		Mon 25.02.13	
Detailed Design Phase	Mon 18.02.13		Sun 10.03.13	
Detailed Design	Mon 18.02.13		Sun 10.03.13	
End of Detailed Design	Sun 10.03.13		Sun 10.03.13	
Manufacturing	Mon 04.03.13		Sun 17.03.13	
Manufacturing	Mon 04.03.13		Sun 17.03.13	
End of Manufacturing	Sun 17.03.13		Sun 17.03.13	
Test and Performance Analysis	Mon 18.03.13		Wed 03.04.13	
Testing	Mon 18.03.13		Fri 29.03.13	
Performance Analysis and Optimisation	Fri 29.03.13		Wed 03.04.13	
Report Preperation and Submission	Fri 01.02.13		Fri 05.04.13	
Final Tunings and Preperations	Fri 05.04.13		Fri 10.05.13	
FFD-2013 Competition	Fri 10.05.13		Sun 12.05.13	
Awards	Sun 12.05.13		Sun 12.05.13	

6

CONCEPTUAL DESIGN & LITERATURE REVIEW

	Component			Types]
	Wing	Monoplane		Tandem		Biplane	
	Fuselage	Blended	7	Conventiona		Lifting	
	Empennage	Conventional	Canard	Vertical Only	V-tail	No Tail	
	Propulsion		Tractor		Push	er	
	Conventional	Ca	anard	Flying	Wing w/o erticals	Flying Wing w/	Verticals
				2			
Con	ventional V-tail	Lifting Co	onventional	Lifti	ng V-tail	Joined W	Ving

7

USED HARWARE

- o 2.4 GHz ISM band radio R/C control receiver,
- Ardupilot Mega v1.0 (APM1.0) autopilot hardware (for autonomous air vehicle),
- Global positioning system (GPS) (for autonomous air vehicle),
- Interface hardware taking its energy from one unit UBEC, Lipo battery and then regulate it to 5V for APM, receiver and servos.

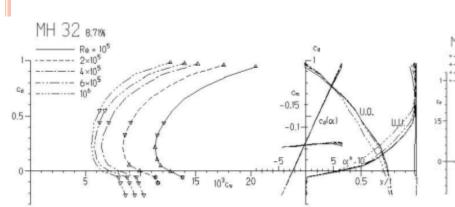
SUGGESTED & USED COMPUTER PROGRAMS

- o XFoil
- o XFLR5
- Xplane
- Take all the affordable open source hardware and software and play with them (such as Ardupilot).

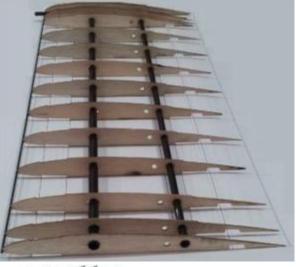
23.09.2013

AIRFOIL SELECTION PHASE

Some properties of MH-32 airfoil can be given as follows as presented in reference [7]:

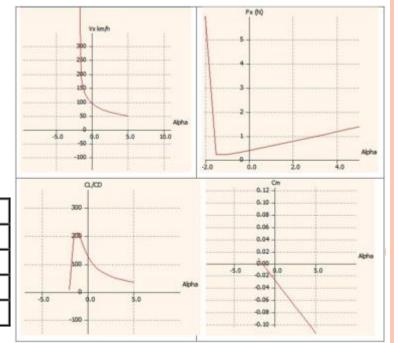

- MH-32 airfoils are designed for electric powered pylon racing model aircraft (FAI class F5D).
- MH-32 airfoils can also be used for F3B and F3J sailplane models (Model «Cygnus»).

Some characteristics of this airfoil can be given as:

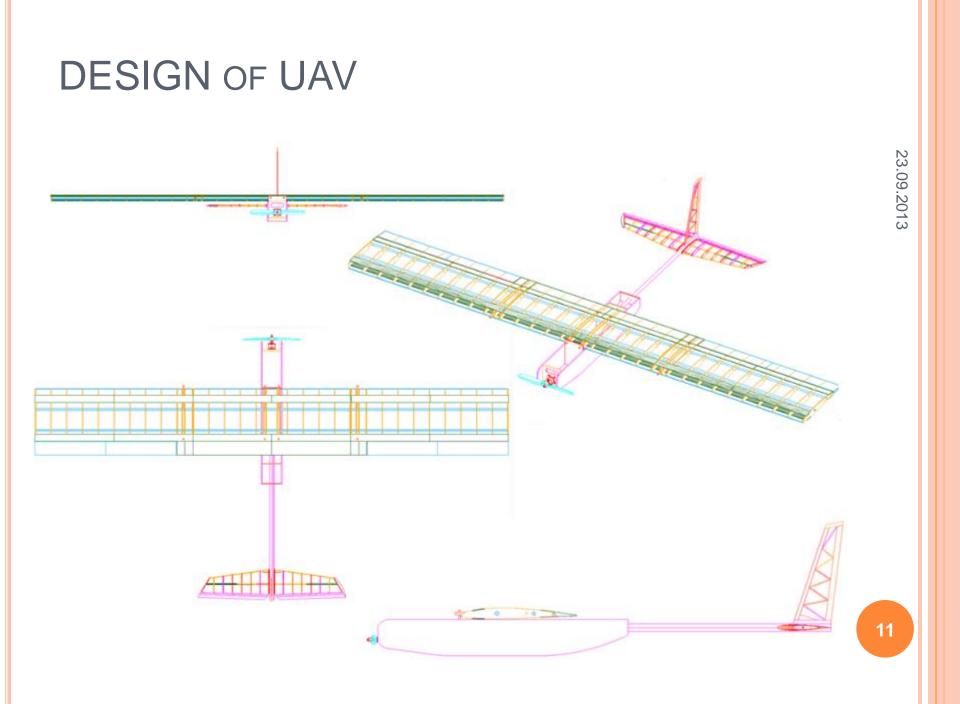

- o Thickness: 8.66%
- Moment coefficient of cm c/4 = -0.057.
- Well suited for 22% chord flaps; -3...-4° deflection for high speed flight and up to 10° for duration tasks.

32 with flop

Can be used at Reynolds numbers of 150'000 and above.


AIRFOIL SELECTION PHASE

XFLR5 is an analysis tool for airfoils, wings and planes operating at low Reynolds Numbers.


It includes:

- XFoil's direct and inverse analysis capabilities,
- Wing design and analysis capabilities based on the following methods:
 - Lifting Line Theory derived from Prandtl's wing theory.
 - Vortex Lattice Method
 - 3D Panel Method

	-				
			and the second sec		
		Concession in the second second	and the second s		~
					-
	-	the second se			
	-				
1000					
And the second second	-				
	-				
			- AND		
				1	
				1	
Plane Name				1	
		2200.000 mm		and the second	
			- 10 -	and a bould	
XTProj. Span		2200.000 mm	v -	and a state state of the state	
XTProj. Span Root Chord		2200.000 mm 300.000 mm	Alpha =	-1.5000*	
XTProj. Span Root Chord H.A.C.		2200.000 mm 300.000 mm 300.000 mm	Alpha = Sideslip =	-1.5000* 0.0000*	
XTProj. Span Root Chord H.A.C. X_CG		2200.000 mm 300.000 mm 300.000 mm 83.000 mm	Alpha = Sideslip = Bank =	-1.5000* 0.0000* 0.0000*	
XTProj. Span Root Chord H.A.C. X_CG		2200.000 mm 300.000 mm 300.000 mm	Alpha = Sideslip = Bank = Control pos. =	-1.5000* 0.0000* 0.0000* 0.0000*	
XTProj. Span Root Chord M.A.C. X_CG Wing Area		2200.000 mm 300.000 mm 300.000 mm 83.000 mm	Alpha = Sideslip = Bank = Control pos. = CL =	-1.5000* 0.0000* 0.0000* 0.0000 0.0453	
XTProj. Span Root Chord M.A.C. X_CG Wing Area XTProj. Area		2200.000 mm 300.000 mm 300.000 mm 63.000 mm 66.000 dm*	Alpha = Sideslip = Bank = Control pos. = CL = CD =	-1.5000* 0.0000* 0.0000* 0.0000 0.0453 0.0002	
XTProj. Span Root Chord M.A.C. X_CG Wing Area XTProj. Area Flane Mass		2200.000 mm 300.000 mm 300.000 mm 63.000 mm 66.000 dm ⁴ 66.000 dm ⁴	Alpha = Sideslip = Dank = Control pos. = CL = CD = Efficiency =	-1.5000* 0.0000* 0.0000* 0.0000 0.0453 0.0002 0.4094	
XTProj. Span Root Chord H.A.C. X_CG Wing Area XTProj. Area Plane Hass Wing Load		2200.000 mm 300.000 mm 300.000 mm 63.000 mm 66.000 dm ⁴ 66.000 dm ⁴ 5.00 kg	Alpha = Bideslip = Control pos. = CL = CD = Efficiency CL/CD =	-1.5000* 0.0000* 0.0000* 0.0000 0.0453 0.0002 0.4994 200.4159	
XTProj. Span Root Chord H.A.C. X_CG Wing Area XTProj. Area Plane Mass Wing Load Tail Volume		2200.000 mm 300.000 mm 300.000 mm 65.000 mm 66.000 dm ⁴ 66.000 dm ⁴ 5.00 kg 0.076 kg/dm ⁴	Alpha = Sideslip = Dank = Control pos. = CL = CD = Efficiency =	-1.5000* 0.0000* 0.0000* 0.0000 0.0453 0.0002 0.4094 208.4159 -0.0000	
XTProj. Span Root Chord M.A.C. X_CG Wing Area XTProj. Area Flane Hass Wing Load Tail Volume Tail Volume Tip Teist		2200.000 mm 300.000 mm 63.000 mm 66.000 dm ⁴ 66.000 dm ⁴ 5.00 kg 0.076 kg/dm ⁴ 0.38 0.00	Alpha = Bideslip = Control pos. = CL = CD = Efficiency CL/CD =	-1.5000* 0.0000* 0.0000* 0.0000 0.0453 0.0002 0.4094 208.4159 -0.0000	
Wing Span XTProj. Span Root Chord H.A.C. X_CG Wing Area XTProj. Area Plane Hass Wing Load Thil Volume Tip Twist Aspect Ratio Taper Ratio		2200.000 mm 300.000 mm 03.000 mm 63.000 mm 66.000 dm ⁴ 5.00 kg 0.076 kg/dm ⁴ 0.38	Alpha = Sideslip = Bank = Control pos. = CL = Efficiency = CL/CD = CL = Cl =	-1.5000* 0.0000* 0.0000* 0.0000 0.0483 0.0002 0.4094 200.4159 -0.0000	

Airfoil Types	MH114	SD7062	HQ 3,5-13
C _{L,design}	0.85	0.45	0.48
C _d	0.0081	0.0081	0.008
C _{L,max}	1.7	1.55	1.45
C _m	-0.194	-0.082	-0.1

MATERIALS & DIMENSIONS

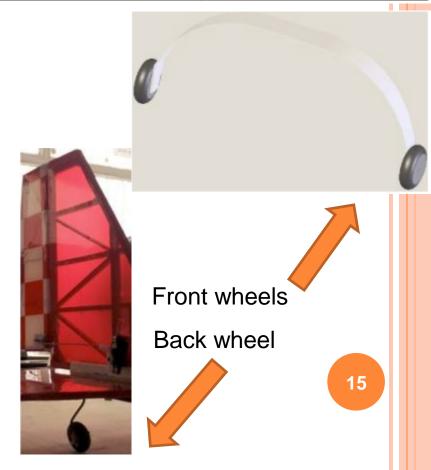
Parts	Shape or Material Properties	Dimensions
Airfoil Material and	Rectangular	32 cm x 3 cm
Construction	Wooden (Balsa)	MH-32 Airfoil Profile
Wing Planform	Rectangular Balsa Wood Rib Construction	225 cm x 32 cm x 3 cm
Wing Configuration	Mono-Wing without Winglets	225 cm x 32 cm x 3 cm
Spar Structure	Circular Shaft, Carbon Reinforced Fiber (CRF)	Øo x Øi x L 12 x 10 x 750 mm (Top Side) 10 x 8 x 750 mm (Bottom Side)
Tail Boom	Hollow Circular Cross Section Carbon Reinforced Fiber (CRF)	Inner Pipe Øi: 16 mm Outer Pipe Øo: 18 mm
Tail Wing Structure	Conventinal Tail Balsa Wood	Horizontal Stabilizer Vertical Stabilizer
Horizontal Stabilizer	Balsa Wood-Rib	Height x Width: 35x75 cm
Vertical Stabilizer	Balsa Wood-Rib	Height x Width: 29 x 36 cm

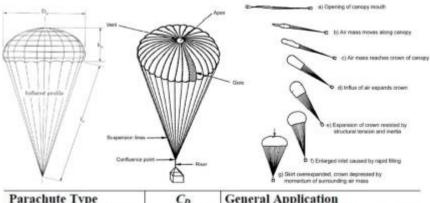
WING DESIGN & PRODUCTION

Parts Dimensions	Dimensions/Units	
MH-32 Airfoil Profile	Span:32 cm Chord:3 cm	
	Total Length: 75 cm x 3= 225 cm	
Main Wing	Width: 32 cm	
	Height: 3 cm	
Wing Tip Rod	Diameter $Ø = 3 \text{ mm}$, Length L =750 mm	
Spar Top Side	Øout x Øin x L: 12 x 10 x 750 mm	
Spar Bottom Side	Øout x Øin x L: 10 x 8 x 750 mm	



TAIL DESIGN & PRODUCTION




FUSELAGE & LANDING GEAR DESIGN

Euro	Fuselage Body	Rectangular Cross Section	
	ruselage bouy	3 mm Thick Plywood	
	Fuselage Floor	3 mm Thick Plywood	
	Fuselage Body Dimensions	LxWXH: 68 x 10.5 x 10 cm	

Parachute Type	CD	General Application
Flat Circular Ribbon	0.45 - 0.50	Pilot, Drogue, Deceleration, Descent
Conical Ribbon	0.50 - 0.55	Pilot, Drogue, Deceleration, Descent
Lifting Conical Ribbon	0.55 - 0.65	Lifting Stores (L/D-0.7)
Hemisflo Ribbon	0.30 - 0.46	Supersonic Drogue
Ringslot	0.56-0.65	Extraction, Deceleration, Descent
Ringslot / Solid Canopy	0.85-0.95	Deceleration, Descent
Ringsail	0.75 - 0.90	Descent
Disk-Gap-Band	0.52-0.58	Supersonic Drogue, Descent
Guide Surface (Ribbed)	0.28 - 0.42	Stabilization, Pilot, Drogue, Descent
Guide Surface (Ribless)	0.30 - 0.34	Pilot, Drogue, Descent
Rotafoil	0.85 - 0.99	Drogue
Vortex Ring	1.50 - 1.80	Descent

PARACHUTE DESIGN

Parachute Descent Rate Calculator [14]

- The descent rate of the load is found as 5.24 meters/sec.
- The recommended parachute diameter for the safe landing is found as ϕ 82 cm.
- The estimated descent time, assuming ejection at 60 meters is obtained as 11 seconds.

Hence, the diameter of the parachute is selected as ϕ 82 cm.

Then child umbrella is used. (COTS)

BOTTLE RELEASE MECHANISMS

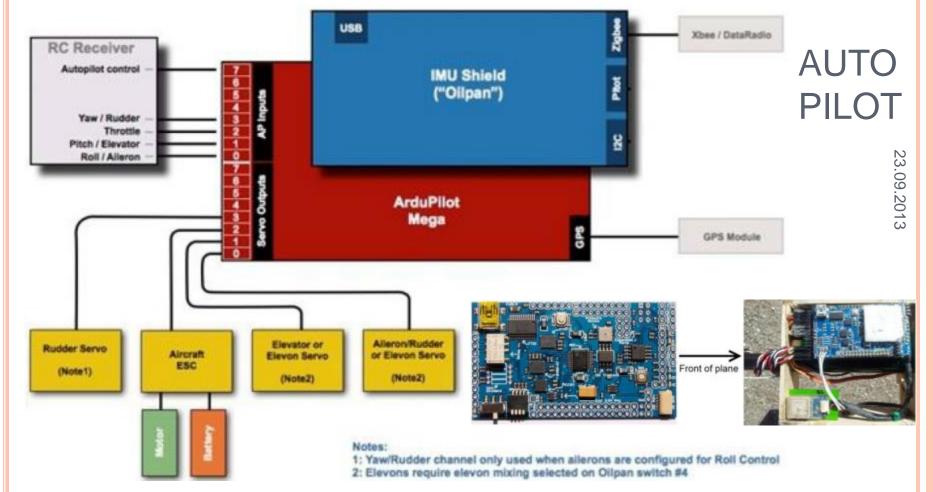
Three servos were used to release the three bottles with their corresponding parachutes.

The mechanism is as shown and the toggle switch is used to trigger the mechanism.

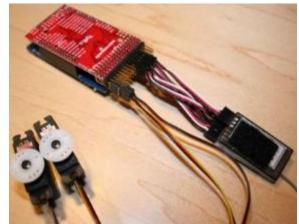
ACTUATORS

Manufacturer: Turnigy	Turns: Original wind is 9	ESC: 45A
Model: Turnigy SK-42-40-750 Kv: 750rpm/v	turns, Delta termination.	Cell count: 3-6
No load properties:	Resistance: 35m_Ohm	Suggested Prop:
1.4A, 11.47Volts, 8200 rpm, Kv=715.	Idle Current: 0.8A	13x8 to 14x6
1.74A, 16.56V, 11,900 rpm, Kv=719.	Shaft: 5mm	Power equivalent:
APC e 10x7, 23A, 15.42V, 9400 rpm. 354 watts.	Weight: 149g	0.40-0.61
APC e 15x4, 37.4A, 14.71V, 8000 rpm. 550 watts.	Rated Power: 600W	
*Includes mount and prop adapter accessories		

- Four servo motors for flight control surfaces (ailerons, elevator, rudder)
- Three servos for the payload release mechanisms.


Rule of Thumb: The tall man should release the UAV.

POWER SUPPLY



Batteries	Main Battery	Supply Battery	F
Туре	Lithium polymer	Lithium polimer	fc
Number of cells	4-cell	3-cell	p
Each cell voltage	3.7 Volt	3.7 Volt	
Total voltage	3.7 x 4 =14.8 Volt	3.7 x 3 =11.1 Volt	
Current (per hour)	5800 mA	2000 mA	

Fuse is also used for safety purposes.

RC Channel	Function	APM Connector (v1.0)
1	Roll	0
2	Pitch	1
3	Throttle	2
4	Yaw	3
5	Autopilot control	7

AUTOPILOT GROUND STATION INTERFACE

Distance to current waypoint ">" Current waypoint number

ASSEMBLY & BOX

23.09.2013

SUMMARY OF DESIGN

Parts	Shape or Material Properties	Dimensions
Airfoil Material and	Rectangular	32 cm x 3 cm
Construction	Wooden (Balsa)	MH-32 Airfoil Profile
Wing Planform	Rectangular Balsa Wood Rib Construction	225 cm x 32 cm x 3 cm
Wing Configuration	Mono-Wing without Winglets	225 cm x 32 cm x 3 cm
	Circular Shaft,	Øo x Øi x L
Spar Structure	Carbon Reinforced Fiber (CRF)	12 x 10 x 750 mm (Top Side)
	Calbon Reiniorced Fiber (CRF)	10 x 8 x 750 mm (Bottom Side)
Tail Boom	Hollow Circular Cross Section	Inner Pipe 16 mm
Tail Doom	Carbon Reinforced Fiber (CRF)	Outer Pipe 18 mm
Tail Structure	Conventinal Tail	Vertical Stabilizer and Rudder is
rai Structure	Balsa Wood	on Horizontal Stabilizer
Fuselage Body	Rectangular Cross Section	3 mm Thick Plywood
Fuselage bouy	Plywood	68 x 10.5 cm (Rectangle)
Fuselage Floor	Plywood	3 mm Thick Plywood
Horizontal	Balsa Wood-Rib	75 x 26 cm Rectangle, with 20
Stabilizer		degree notches from the middle
Vertical Stabilizer	Balsa Wood-Rib	14x 36,5 x 29 cm Trapezoid
Power Plant	Brushless Motor (Single)	Turnigy AerodriveXP SK 42-40
		750kv brushless motor

FLIGHT TESTS & PERFORMANCES

Critical Parameters	Performance Values	Critical Parameters	Performance Values
Take off speed	10 m/s	Range	Circle with 3 km radius
Cruise speed	16 m/s	Endurance	30 minutes (full loaded) 1 hour (empty)
Landing speed	12 m/s	Maximum velocity	20 m/s
Take off distance	10 m	Rate of climb	3 m/s (Loaded) 6 m/s (Empty)
Stall speeds	10 m/s	Maximum turn rate	4 m/s
Wing loadings	70 gr/dm ²	Minimum turn radius	30 m
Thrust to weight ratios	0.8	Maximum load factor	3 kg (payload) 7 kg (total)

23.09.2013

LESSONS LEARNED

- First learn to fly manually well with remote controller,
- Know well all the functionalities and properties of the components used on UAV such as engines, autopilot, ESC, servos, mechanism etc.,
- Learn all the behavior of UAV with many flight tests under different weather conditions (still air, windy air conditions, hidden in front of sun etc.),
- Observe and feel the top and bottom side of UAV well during all the flight,
- Don't use many AAA batteries in the remote controller; one of them can be disappointing. Instead of them use packaged batteries,
- Do not forget that autopilot does not help to balance all the CG related problems, design problems or other unbalances due to the structure,
- The CG of the UAV is usually at the 1/3 of the wing chord. Check the balance of the CG before the flight and add weight to the proper location if necessary,
- Keep it simple and stupid, (very simple switch solution to release parchutes with bottles; use as possible as simple hardware solutions instead of more complex software solutions),
- Use big landing gears (It saves the life of your UAV),
- Don't fly in a crowded pist; especially if the competition is very soon.(Experienced a crash 9 days before the competition.) ,

LESSONS LEARNED

- Wing load and wing profile calculation and selections are performed by just taking into account the payload load. However speed and timing is also important and should be taken into account as well. Next time while selecting wing profile, the speed and timing will also be considered.
- Read the rules and requirements of the competition very carefully.
- Follow the grading during competition and change your UAV design by using modular parts and change your strategy if necessary. If the grading formula is too complex prepare your grading chart to follow your grade as well as the others. Since the grades of FFD-2013 is transparent, we have a chance to prepare our records. Thanks again FFD-2013 commity.
- Team work is very important. If every team member takes responsibility and do his/her job, success is the only result.
- Take all the necessary steps and phases one by one and work hard before entering into the competition. This creates self confidence and generates the belief of success.

OTHER LESSONS LEARNED (FOR LIFE)

- Although you have a team; work as if you are alone!
- Don't try to carry three watermelon between two arms (education, competition for the hobby, work, home, etc. etc...); focus on a one thing at a time!
- Work hard all the time!
- Never lose hope and never give up!
- Be patient and cool in all the races!
- Enjoy from each moment of the competition and life!
- Follow the lessons learned rules stated above, and finally you will get the success!

CONCLUSION

N

23.09.2013

References

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

- [1] Anderson J. D. Jr., 'Aircraft Performance and Design', University of Maryland, 1999
- [2] Chapter 5. Wing Design, http://www.scribd.com/doc/57786879/Chapter-5-Wing-Design
- [3] http://www.mh-aerotools.de/airfoils/mh32koo.htm
- [4] (Un)Stable Mable Final Design Report, Department of Aerospace Engineering University of Illinois
- at Urbana-Champaign, 2004/2005 Cessna and ONR AIAA Design/Build/Fly Competition Webster
- Field St. Inigos, Maryland, March 8, 2005.
- [5] Guglieri G., Introduction to Parachute Subsonic Aerodynamics, Politecnico di Torino Dipartimento di
- Ingegneria Aeronauticae Spaziale Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
- http://www.aero.polimi.it/~boffadossi/bacheca/Aerodinamica/parachutes.pdf
- [6] Elger D.F, Finding Drag Coefficient for a Parachute
- http://www.webpages.uidaho.edu/dl2/on_target/find_Cd.htm
- [7] Crowe, Elger and Roberson, Engineering Fluid Mechanics, Section 13.4, 7th Edition, 2001
- [8] http://www.dynetic.com/brushless%20vs%20brushed.htm
- [9] Chapter 5. Wing Design, http://www.scribd.com/doc/57786879/Chapter-5-Wing-Design
- [10] http://www.onlinetesting.net/cgi-bin/descent3.3.cgi
- [11] 2012 Anatolian Craft Team, Middle East Technical University, AIAA Design/Build/Flight Competition
- [12] Team Shadow Drag, Purdue University, 2008 AIAA Cessna/Raytheon Design/Build/Fly Competition, Lockheed Martin.
- [13] 2007/2008 AIAA Cessna/Raytheon Design/Build/Fly Competition Aircraft Design Report,
- Massachusetts Institute of Technology Team Concrete
- [14] Peterson C. W., The magazine Physics Today, August 1993.
- o [15] D. Poynter, The Parachute Manual-Vols 1&2, Para Publishing, Santa Barbara, CA
- [16] T.W. Knacke, Parachute Recovery Systems Design Manual, Para Publishing, Santa Barbara, CA
 - [17] Anderson, J.D., Fundamental of Aerodynamics, McGraw-Hill, Boston, MA, 1981.
 - [18] "Wing and a Prayer", Utah State University March 2000, 1999/2000 AIAA Foundation Cessna/ONR
- Student Design Build Fly Competition Design Report
- o [19] Nelson, R.C., Flight Stability and Automatic Control, McGraw-Hill, Boston, MA 1988.

THANKS

- Thanks a lot to Turkish Airforce Academy to organize a very good competition FFD-2013 and a perfect air show,
- Thanks a lot to Ankara Model Plane Club and its very special and experienced members for all the lessons that I have learned,
- Thanks a lot to AIAC commity for the preparation of the conference and to give a chance to present all the works performed,
- Finally, thanks to you for your listening and patience.

QUESTIONS ?