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ABSTRACT

Linearized structural dynamics of helicopter rotor blades and the sensitivity analysis of rotor blade eigenvalues
to the critical design variables related to structural dynamics are studied. The main goal is to develop a tool
for conceptual aeroservoelastic design of rotorcraft. For this purpose, a linearized structural dynamics model
for rotating blades is developed using finite volume method. Using the element matrices of the finite volume
model, analytical sensitivities of mass and stiffness matrices to inertia and elasticity parameters are formulated
to evaluate the sensitivities of eigenvalues and eigenvectors. The developed tool is verified and the sensitivity
analysis of a typical rotor blade is performed by numerical continuation.

INTRODUCTION

Due to the increased sophistication in rotorcraft design requirements and technology, the conventional concep-
tual design strategies are not sufficient. Therefore higher certainty is needed in conceptual design phase which
can be done by combining classical design tools with high-fidelity analysis including comprehensive analysis,
computational fluid dynamics and structural analysis [Johnson, 2010]. For this reason design tools that can
provide parametric sensitivity analyses are necessary.

An accurate structural dynamics model is essential in analysis and design of helicopter rotor blades. CAMRAD
JA, CAMRAD II, MBDyn, UMARC, FLIGHTLAB and DYMORE are among the most widely used ones
[Johnson, 2011]. For this purpose a Finite Volume concept is implemented for rotating C0 beams based on
[Ghiringhelli et al., 2000]. The stiffness of each finite volume beam is represented by 6×6 stiffness matrix. The
inertial loads are added in a lumped manner. The nonlinear equations are linearized to allow the computation
of in-vacuo modes and sensitivity analysis. The formulation is validated against rotating and non-rotating
beam results.

Sensitivity analysis is critical in conceptual design phase where the level of uncertainty is high. In fact at the
conceptual design phase the optimum solution is searched which requires the evaluation and interpretation of
the sensitivity of the design to prescribed design parameters. When higher sensitivity design parameters are
focused, it is more likely to converge to an optimum product. On the other hand, when robustness of the
design is considered, sensitivity analysis can prevent violating a requirement or approaching to a limit with a
small deviation in a variable that possess very high level of sensitivity. Therefore both optimum design and
design robustness in rotor blade structural dynamics is believed to benefit from sensitivity analyses that is
implemented with a finite volume beam formulation.

When sensitivity or a design objective to design parameters are considered, the behavior of the system to the
selected parameters can be analyzed by numerical continuation procedures [Krauskopf et al., 2007]. Once the
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Figure 1: Finite Volumes three-node beam
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Figure 1: 3-Node Beam element in Global Reference Frame

sensitivity matrices are either analytically developed or evaluated by numerical differentiation, the continuation
analysis can provide the directions of the design for optimal performance and the robustness of the system to
any change or uncertainty. This is especially important for problems having multiple design parameters.

This paper is organized as follows. The following chapter explains the theory of rotating blade model and then
provides the sensitivity relations with respect to the parameters related to cross section inertia and stiffness.
In the Numerical analysis section, the tool is verified against well-known tools for rotating and non-rotating
natural frequencies. A sensitivity analysis is then performed for a problem which analyzes the required amount
of change in design parameters that keeps blade frequencies constant after introducing bending-torsion coupling
to a rotating blade.

METHOD

Linearized Elasticity of Blade

Beam Discretization: The structural dynamics model is developed in rotating frame of a single blade based
on Finite Volume Formulation [Ghiringhelli et al., 2000]. A three node beam element is used in formulation as
given in Figure 1. The longitudinal axis is the blade axis radially outward, the vertical axis (z axis) is parallel
to the rotation axis and lateral axis y is the rotor in-plane axis perpendicular to radial axis x and vertical axis
z axis. This reference frame is referred to as global frame. The beam reference plane, where elastic properties
are defined, are referred to as local reference and lies on a dimensionless coordinate ξ. The variables having
an over-tilde ˜(•) are defined in this local beam reference. The nodes (i = 1, 2, 3) are the locations where
displacements (x) and rotations (ϕ) about three orthogonal axes are defined. The beam element is defined
by three reference points which are attached to three nodes having an offset f̃ from the corresponding node
point in the beam reference frame. Then the location of the beam reference line (p) can be defined as;

p = x + Rf̃ (1)

where x is the location of the corresponding node and R is the rotation matrix of the beam reference frame
with respect to global frame. The strain vector δψ is composed of linear strain δε and linear curvature δκ in
perturbation form. As given in [Ghiringhelli et al., 2000], they can be expressed as;

δε = δp′ + p′0 × δϕ and δκ = δϕ′ (2)

where p0 is the strain in reference condition and δϕ represents the linearized rotation. In linearized rotation,
the rotation can be represented as a vector of three angles about three orthogonal axes. The strains are
computed at the evaluation points (k = I, II) as shown in Figure 1. For this beam model the evaluation
points are ξI = −1/

√
3 and ξII = 1/

√
3. These points are Gauss quadrature points for polynomials up to

third order and they are proven to provide exact behavior for end applied nodes [Ghiringhelli et al., 2000].
The spatial derivative of beam reference line as a function of the nodes are evaluated using second order
polynomials (N).

N1(ξ) =
ξ(ξ − 1)

2
N2(ξ) = 1− ξ2 N3(ξ) =

ξ(ξ + 1)

2
(3)

where ξ = −1, 0, 1 are the points on local coordinate (ξ) corresponding to start, mid and end nodes respectively.
The position and rotation vector and their derivatives at local coordinate (ξ) can be expressed as a summation
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of all three beam reference points for i = 1, 3;

p(ξ) = Ni(ξ)(xi + Rif̃ i) , p′(ξ) = N ′i(ξ)(xi + Rif̃ i) and ϕ(ξ) = Ni(ξ)ϕi , ϕ′(ξ) = N ′i(ξ)ϕi (4)

Equilibrium Equation and Linearization: The rotating blade is discretized by using a C0 beam, meaning that
displacement and rotation are two separate fields, based on the finite volume concept [Ghiringhelli et al.,
2000]. The equation of beam can be stated as an equilibrium between internal forces and moment (ϑ) and
distributed forces and moments (τ );

ϑ′ −TTϑ+ τ = 0 (5)

where derivation is evaluated with respect to beam reference line ξ and TT is the arm matrix of internal forces.

T =

[
0 p′×
0 0

]
(6)

The internal loads (ϑ = [ϑT
I ϑT

II ]T ) evaluated at the evaluation points and the external loads (F =
[FT

1 FT
2 FT

3 ]T ) applied at node points are in equilibrium according to the formulation [Ghiringhelli et al.,
2000];

Aϑ = F (7)

where A is the integrated arms matrix (Eq. 6) which guarantees equilibrium between the external loads at the
nodes and internal loads at the evaluation points.

A =


I 0 0 0

(pI − x1)× −I 0 0
I 0 −I 0

−(pI − x2)× I (pII − x1)× −I
0 0 I 0
0 0 −(pII − x3)× I

 (8)

If perturbation is applied to Eq. 7,

���A0ϑ0 + A0δϑ+ δAϑ0 +���δAδϑ =��F0 + δF⇒ A0δϑ+ δAϑ0 = δF (9)

where terms with 0 subscript are reference conditions. Eq. 9 is the linearized equilibrium equation around a
reference condition after neglecting higher order terms and canceling reference condition. The term A0δϑ
gives the perturbation of internal loads with a arm matrix at reference configuration whereas δAϑ0 term is
responsible from stiffness contribution due to pre-stress of the beam element under reference centrifugal loads.

Constitutive Law: The internal loads ϑ are related to strains ψ by a linear elastic constitutive law ϑk = Dkψk

at two evaluation points ξI = −1/
√

3 and ξII = 1/
√

3. For an isotropic cross section with double symmetry,
the 6× 6 material matrix D about its principal axis has the following form;

D =


EA 0 0 0 0 0
0 GAy 0 0 0 0
0 0 GAz 0 0 0
0 0 0 GJ 0 0
0 0 0 0 EIy 0
0 0 0 0 0 EIz

 (10)

where EA is the axial stiffness, GAy and GAz are the shear stiffnesses about shear principal axes, GJ is the
torsional stiffness, EJy and EJz are the bending stiffnesses about bending principal axes. For an orthotropic
cross section, D can be fully populated. In general, accurate beam constitutive properties for non-homogeneous
and anisotropic sections can be formulated using the approach originally proposed by [Giavotto et al., 1983].

Perturbation of Internal Loads: Considering that it is more convenient to provide material matrix in beam
reference frame, internal forces given can be expressed in global frame as ;

ϑ = Dψ = RD̃RTψ (11)

R and D̃ are the rotation and constitutive law matrices having the contributions from two evaluation points
and similarly ϑ and ψ are the internal load and strain vectors at the evaluation points.

R = diag([RI RI RII RII ]) , D̃ = diag([D̃I D̃II ]) , ϑ = [ϑT
I ϑT

II ]T , ψ = [ψT
I ψT

II ]T (12)
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Then the perturbation of internal loads ϑ is;

δϑ = δRD̃RT
0 ψ0 + R0D̃δRTψ0 + R0D̃RT δψ (13)

where terms with 0 index represents reference conditions. Remembering that δR = δϕ × R0 and δRT =
RT

0 δϕ×, for a rotation matrix R and corresponding linearized rotation angle δϕ, Eq. 13 is rearranged as,

δϑ = −ϑ0 × δϕ+ R0DRT
0 (δψ +ψ0 × δϕ) (14)

where ϑ0 and ψ0 are the reference internal forces and strains and × represents the matrix from of a vector
product operation. Considering that in helicopter blades, centrifugal loads are significantly larger then other
form of external loads, only tension forces due to rotation (t0) at evaluation points are considered as reference
internal loads. Then ϑ0× matrix becomes;

ϑ0× =


0 tI0× 0 0
0 0 0 0
0 0 0 tII0×
0 0 0 0

 (15)

Finally δψ can be written using shape functions for node indices i = 1, 3, with f = Rf̃ , where f̃ is the offset
in node reference frame.

δψ =


δεI
δκI

δεII
δκII

 =


N ′IiI p′0I ×NIi −N ′Iif i×

0 N ′I,iI

N ′IIiI p′0I ×NIIi −N ′IIif i
0 N ′IIiI

[ δxi

δϕi

]
(16)

Stiffness contribution due to pre-stress: The δAϑ0 term in Eq. 9 is the effect of reference loads on the
response of the beam which can be considered as stiffening due to reference loads. The linearization of arms
matrix A comes from Eq. 6 by perturbing the variables p and x. This matrix is multiplied by tension due to
centrifugal loads. Without going into detail, collecting the variables as a right hand side vector, the stiffness
contribution due to pre-stress can be obtained as;

SP = δAϑ0 =



0 0
tI0 × (NIi − δi1) −tI0 ×NIif i×

0 0( −tI0 × (NIi − δi2)

+tII0 × (NIIi − δi2)

) (
tI0 ×NIif i×
−tII0 ×NIIif i×

)
0 0

−tII0 × (NIIi − δi3) tII0 ×NIIif i×


[
δxi

δϕi

]
(17)

where δij is the Kronecker delta operator.

Inertial Loads

The inertial loads are taken into account under the external loads (F) given in Eq. 7. An exact representation
requires integration over the beam element. However, using lumped mass and inertia gives enough accuracy
without increasing computational work. Therefore inertial loads are formalized by using lumped masses and
inertias for a constant rotor angular speed.

Lumped Mass and Inertia in Rotating Frame: The main strategy of lumped mass and inertia application is
to discretize the blade similar to that of elastic beam elements. Since a beam element is composed of three
sections in elastic discretization, it is also decided to represent the lumped masses and moments at the same
sections as given in Figure 2 where spheres represents the lumped mass having inertia. The inertial force
acting on a node can be represented as;

Fin = −m d2

dt2
(x + fCM) (18)

where the center of mass in global reference frame is given as fCM = Rf̃CM with center of mass offset f̃CM

given in beam reference frame. The load in rotating reference frame can be expressed after differentiation as;

Fin = −m(ẍ + ω̇ × fCM + ω × ω × fCM) (19)
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Figure 1: Finite Volumes three-node beam
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Figure 2: Lumped mass and inertia

where the term ẍ and ω̇ are the linear and rotational accelerations of the node in rotating reference frame.
The higher order term (ω × ω×) can be neglected since the code deals with the perturbation displacement
and rotations. For constant RPM, the inertial loads formula becomes;

Fin = −m(ẍ− fCM × ω̇) = −m(ẍ + fCM ×T ω̇) (20)

The moment at the node comes from two contributions. The first one is the derivative of angular momentum;
the other one is the force contribution that originates from offset of center of mass, which can be written as;

Min = −JCMω̇ − ω × JCMω + fCM × Fin (21)

where JCM is the inertia matrix at the center of mass. Inserting inertial force into above equation;

Min = −JCMω̇ − ω × JCMω −m(fCM × ẍ− fCM × fCM × ω̇) (22)

Following the same procedure that was applied to inertial force and defining inertia about node Jn as Jn =
JCM +mfCM × fCM×T leads to compact moment equation;

Min = −Jnω̇ −mfCM × ẍ = −Jnω̇ +mfCM ×T ẍ (23)

Remembering that for small angles the angular velocity is the time derivation of the rotation angle, i.e ω = ϕ̇
and writing force and moment equations in perturbation form and collecting in matrix form yields[

δFin

δMin

]
= −

[
mI mfCM×T

mfCM× Jn

] [
δẍ
δϕ̈

]
(24)

Effect of Rotation: The lumped mass formulation in previous chapter is given for a mass in rotating reference
frame. However in order to see the effect of rotation, the acceleration in rotating reference frame ẍ should be
decomposed into its constituents. The transformation matrix from non-rotating reference frame variable xnr

to rotating reference frame variable xr can be written as

xnr = RΩxr (25)

where RΩ is the transformation from rotating to non-rotating reference frame. Differentiating once gives
velocity in non rotating frame,

ẋnr = Ω×RΩxr + RΩẋr (26)

where derivative of orientation vector for a rotating frame is Ṙ = Ω × R. Differentiating once more gives
acceleration in non rotating frame,

ẍnr = (Ω̇ + Ω×Ω×)RΩxr + 2Ω×RΩẋr + RΩẍr (27)

The acceleration in non-rotating reference frame is required to be projected to rotating frame in which loads
acting on blades are expressed. Considering that for a rotation matrix RRT = I, when Eq. 25 is multiplied by
RT

Ω it can be stated as xr = RT
Ωxnr. Then the acceleration projected to rotating reference frame becomes;

RT
Ωẍnr = (RT

ΩΩ̇×RΩ + RT
ΩΩ×Ω×RΩ)xr + 2RT

ΩΩ×RΩẋr + RT
ΩRΩẍr (28)

5
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Since RΩ is the rotation matrix caused by the angular velocity Ω about a single axis, RT
ΩΩ = Ω and

RT
ΩΩ = Ω and RT

ΩΩ ×RΩ = (RT
ΩΩ)×. Then the acceleration in non-rotating frame can be projected on

rotating reference frame as

RT
Ωẍnr = (Ω̇×+Ω×Ω×)xr + 2Ω× ẋr + ẍr (29)

Moreover since the rotor speed is held constant and x = xr by definition, the equation reduces to

RT
Ωẍnr = Ω×Ω× x + 2Ω× ẋ + ẍ (30)

The ẍ term in Eq. 30 is already included in Lumped Mass formula and gives usual mass matrix in the rotating
frame. The rotation effects comes from the remaining terms which are explained in next two paragraphs.

Destabilization Force: The Ω × Ω × x term in Eq. 30 is the steady centrifugal force acting on the blade
section which is included before in the stiffness contribution due to pre-stress and responsible for the centrifugal
stiffening. The perturbation due to this term gives additional term that is important in rotor dynamics;

δFDS = −mΩ×Ω× δx (31)

When angular velocity is taken about z axis Ω = [0 0 Ωz]T and the perturbations of node in x, y and z
directions given in the rotating reference frame can be stated as δx = [δu δv δw]T . The perturbation in x
direction can be neglected since external perturbation loads in that direction is negligible as compared to the
other two directions. Then the final form of the equation can be written as;

δFDS = mΩ2
zδvr (32)

This force is referred to as destabilization force since as opposed to Eq. 24, the sign is positive therefore ads
energy into system. The effect of this force is in the lead lag direction due to the δv term.

Coriolis Forces: The 2Ω× ẋr term in Eq. 30 gives additional term that is important in rotor dynamics. The
perturbation force due to this term gives Coriolis Forces which is discarded in normal modes analysis.

δFcor = −m2Ω× δẋ (33)

Continuation

General form of free vibration equation is written as a function of eigenvalues (s = jω) and eigenvector x(s);

s2Mx(s) + Kx(s) = 0 (34)

where M and K are the global mass and stiffness matrices of the structural dynamics model. These matrices
are obtained by assembling the element matrices as described in previous section.

For sensitivity purposes, the change of the solution with respect to a parameter (p) is looked for. Hence all the
matrices (M = M(p),K = K(p)), eigenvalue (s = s(p)) and eigenvector (x = x(p)) of Eq. 34 are functions
of that parameter. Then differentiating with respect to parameter p;

s2M/px + s2Mx/p + 2ss/pMx + K/px + Kx/p = 0 (35)

where s and x(s) is a solution of Eq. 34 and terms with subscript /p represent derivative with respect to
the prescribed parameter p. The mass and stiffness sensitivity matrices, M/p and K/p, are evaluated at that
solution point. The derivatives of the matrices are assumed to be known at this point and in subsequent
sections they are provided for a set of design variables. If the number of degrees of freedom is n, then for each
eigenvalue s, x gives a vector having a dimension of n. On the other hand, the unknowns are the derivatives
of eigenvalue (s/p) and eigenvector (x/p), a total of n + 1. Therefore Eq. 35 provides n equations whereas
there are n + 1 unknowns since both of (s/p) and (x/p) are needed to be evaluated. One more equation is
required and it comes from the orthogonality of the normalized eigenvector;

xTx = 1 then 2xTx/p = 0 (36)

Now the equation is full rank, provided the multiplicity of the eigenvalue is 1 and hence the stability derivatives
can be evaluated. Combining Eq. 35 and Eq. 36 in matrix form gives the first order derivatives of eigenvalue
(s/p) and eigenvector (x/p) which can be evaluated using the matrix form.[

s2M + K 2sM
2xT 0

] [
x/p

s/p

]
=

[
−(s2M/p + K/p)

0

]
(37)
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Sensitivity Matrices

The sensitivity of mass and stiffness matrices are formulated in element level. The element matrices are then
assembled to obtain global sensitivity matrices. Since this work focuses on structural dynamics, the sensitivities
with respect to mass, torsional inertia and stiffness elements of constitutive law are derived.

Constitutive Law: The constitutive law is a 6×6 matrix as mentioned before. It can depend on any parameter
of the blade section, from the cross section dimensions such as chord and thickness to the material properties.
It should be noted that the cross section is defined in beam reference frame so that the sensitivity is independent
of the orientation of the cross section.

The constitutive law matrix D̃ appears in the perturbation of the internal loads, δϑ, given in Eq. 14. Assuming
that that the effect of reference strain ψ0 is negligible, the perturbation of inertial loads becomes;

δϑ = −ϑ0 × δϕ+ R0D̃RT
0 δψ (38)

Differentiation with respect to a parameter p which is a variable of the constitutive law matrix D̃ gives;

δϑ/p =R0D̃/pRT
0 δψ (39)

where D̃/p is required to be provided according to the physical design parameter. If the design variable is
one of the stiffness parameters given in Eq. 10, then that element of the matrix is 1 while the rest is null.
The assembly of local elements gives the sensitivity of the global stiffness matrix to the prescribed stiffness
property.

Mass Distribution: Due to the inertial couplings acting on a rotating blade, the effect of mass distribution
is more complex as compared to that of constitutive law matrix and both global mass and global stiffness
matrices have sensitivity to mass distribution. For the mass matrix, the sensitivity comes from the inertia
matrix of Eq. 24 by differentiating with respect to m,[

δFin/p

δMin/p

]
= −

[
I fCM×T

fCM× fCM × fCM×T

] [
δẍ
δϕ̈

]
(40)

The inertial loads also contribute to the sensitivity of stiffness matrix through the destabilizing force given in
Eq. 31. The differentiating with respect to m gives,

δFDS/p = −Ω×Ω× δx (41)

Another contribution to sensitivity of stiffness matrix arises from the stiffness contribution due to pre-stress
given in Eq. 17 through the reference tension loads tI0, tII0. If these reference loads are evaluated for unit
mass m = 1, the sensitivity matrix of the stiffness contribution due to pre-stress is obtained.

SP/p =



0 0
tI0,m=1 × (NIi − δi1) −tI0,m=1 ×NIif i×

0 0( −tI0,m=1 × (NIi − δi2)

+tII0,m=1 × (NIIi − δi2)

) (
tI0,m=1 ×NIif i×
−tII0,m=1 ×NIIif i×

)
0 0

−tII0,m=1 × (NIIi − δi3) tII0,m=1 ×NIIif i×


[
δxi

δϕi

]
(42)

A similar contribution comes from the reference load contribution given in Eq. 31. Again evaluating the
reference load for m = 1 gives the sensitivity of internal load perturbation to the mass distribution.

δϑ/p = −ϑ0,m=1 × δϕ (43)

Moment of inertia about radial axis: The moment of inertia about radial axis, Jx, is effective over torsional
frequencies. To derive its sensitivity, Eq. 24 is differentiated with respect to Jx which gives[

δFin/p

δMin/p

]
= −

[
0 0
0 JCM/p

] [
δẍ
δϕ̈

]
(44)

where JCM/p = diag[1 0 0]. If the sensitivity of the other elements of JCM is required, similarly the value
of that element can be set to unit.
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NUMERICAL ANALYSES AND RESULTS

Verification

A non-rotating twisted blade [Isakson and Eisley, 1964] and a rotating blade [Wilkie et al., 1997] are analyzed
to verify the linearized blade model against well-known tools. Both studies are also included in MBDyn
Application manual where details can be found [Masarati, 2010]. The non-rotating twisted beam is subjected
to different bending stiffness ratios in out of plane (flap) and in-plane (lag) directions (γ2 = EIflap/EIlag=0,
0.01, 0.1, 0.0254). The effect of twist for linearized blade model and MBDyn is provided in Figure 3. For
the rotating blade example, a beam is subjected to a range of RPM between 0 and 660. First five natural
frequencies are compared with NASTRAN and MBDyn values, in the fan-plot diagram of Figure 4. Both
rotating and non-rotating validation give very close results.

Sensitivity Analysis for Aeroelastic Tailoring

A sample problem is selected for a rotating blade having the properties given in Table 1. The data of the blade
is loosely related to Aerospatiale Gazelle [Yamauchi et al., 1988] with a higher stiffness in chordwise direction
and very stiff in radial elongation (EA) and shear deformation (GAy and GAz).

Table 1: Blade data used in sensitivity analysis

Main Rotor Radius 5.25 m
Blade-Hub Connection Articulated
Flapwise Stiffness (EIy) 0.01×106 Nm2

Chordwise Stiffness (EIz) 13×106 Nm2

Torsional Stiffness (GJ) 0.03×106 Nm2

Rotatory Inertia (Jp) 0.08 kgm
Mass (m) 11 kg/m
Main Rotor Angular Speed (Ω) 387 RPM

This analysis investigates the required amount of change in selected parameters as a function of a design
input which produces favorable flapwise bending-torsion coupling thorough introducing elastic constant of
constitutive law. As mentioned before for an isotropic and symmetric cross section, the elements of constitutive
matrix D is diagonal. In order to introduce this coupling, elements of D at indices (4,5) and (5,4), K =
D45 = D54, are set to a non-zero value as given in Eq. 45. It should be noted that in the present work a
generic coupling coefficient is considered, without analyzing how the cross section design needs to be modified
in order to obtain it. Sensitivity to actual beam section design parameters will be the objective of future work.

D =


EA 0 0 0 0 0
0 GAy 0 0 0 0
0 0 GAz 00000 00000 0
0 0 0 GJ K 6= 0 0

00000 00000 00000 K 6= 0 EIy 00000
0 0 0 0 0 EIz

 (45)

The objective is to keep the natural frequencies below 5/rev constant, where 1/rev is the dimensionless
rotor angular speed. This is critical since the change in blade natural frequencies leads to the change in the
vibrational characteristics of the blade. The modes below 5/rev include rigid lag and rigid flap, elastic torsion
and two elastic flap modes whereas the frequencies higher than 5/rev are assumed to be less important in
terms of vibrational characteristics. Since tension due to centrifugal loads dominates rigid lag and flap modes
and hence their dependence on elastic constants are negligible, rigid modes are not included in the formulation
of sensitivity analysis. The general form of the problem can be stated as;

Np∑
i=1

ω/pi
∆pi = 0 (46)

where ω/pi
is the sensitivity of a vector of selected natural frequencies ω with respect to change in a parameter

∆pi. The interested natural frequencies are 2nd and 3rd flap frequencies and 1st torsion.

 ω2F/m

ω3F/m

ω1T/m

∆m+

 ω2F/EIy

ω3F/EIy

ω1T/EIy

∆EIy +

 ω2F/Jp

ω3F/Jp

ω1T/Jp

∆Jp +

 ω2F/GJ

ω3F/GJ

ω1T/GJ

∆GJ +

 ω2F/K

ω3F/K

ω1T/K

∆K =

 0
0
0

 (47)
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Figure 4.1: Effect of twist on uniform, non-rotating, cantilever bending blade

On the mass side, the inertia moment along theX axis (torsion) is set to a value 6 order
of magnitude smaller than those along the other directions.In all the computations, the
stiffnessEI1 is kept constant, and onlyEI2 varies under the effect of variations in the
parameterγ.

The influence of twist and of the parameterγ on non-rotating blades is shown in
Fig. (4.1), in which the special case ofγ2 = 0.0254 is also considered. In this case
the first chordwise frequency coincides with the the second flapwise frequency. For
γ2 = 0, i.e. with the blade infinitely stiff chordwise, the effectof twist is to reduce the
frequency of the higher modes. Asγ2 is increased the twist has a strong coupling effect
which tends to drive flapwise and chordwise frequencies together.

On validating the procedure within MBDyn, it is worth noticing that the compari-
son with Figure (3a) in (8) shows perfect matching.

Figure (4.2) shows the combined effect of twist and rotational velocity on the nat-
ural frequencies. The four figures refers to three differentvalues ofγ2. Whenγ2 = 0,
Fig (4.2(a)), the frequencies are all very well separated and the effect of twist is not
very evident, the major contribution being given by the rotational velocity.

As γ2 is increased, there can be intersections between the frequencies curves when
rotational velocity is present. As a consequence, the first chordwise frequency, usually
higher than the second flapwise ferquency, can become lower that the latter due to the
rotational velocity. But this happens only in case of zero twist. In fact, whenθ 6= 0, the
intersection no longer occur.

Again, for a further validation of the procedure in MBDyn, note that Fig (4.2)
shows a good agreement with Figure (8) in (8).

4.2.2 Coupled Bending Torsion

34
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Figure 3: Comparison of Non-Rotating Blade Frequencies
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Since the coupling terms K is aimed to be investigated, its value and the sensitivities of natural frequencies
are input, whereas the other design parameters are unknown. Then Eq. 47 can be written in matrix form as;

 ω2F/m ω2F/EIy ω2F/Jp
ω2F/GJ

ω3F/m ω3F/EIy ω3F/Jp
ω3F/GJ

ω1T/m ω1T/EIy ω1T/Jp
ω1T/GJ




∆m
∆EIy
∆Jp
∆GJ

 = −

ω2F/K

ω3F/K

ω1T/K

∆K (48)

which can also be written in closed form A∆p = b where A is the sensitivity matrix ∆p is the vector of
unknown parameters and b is the change in frequency vector due to the prescribed value of bending-torsion
coupling. However as can be seen in Eq. 48, there are more unknowns (∆p) than inputs (b), hence the
system in under-determined. Since the solution is not unique for such a system the required vector (∆p)
should be evaluated using a minimum norm solution to minimize the cost. For this purpose a norm is defined
as a function of the unknown parameter vector as,

∆p + W−1AT ∆λ = 0 (49)

where W is a diagonal weighting matrix that normalizes the variables having different units with their reference
values.

W = diag[1/m2
ref 1/EI2

y,ref 1/J2
p,ref 1/GJ2

ref ] (50)

In matrix form minimum norm solution is written as,[
W AT

A 0

] [
∆p
∆λ

] [
0
b

]
(51)

This is a square matrix and by partitioning Eq. 51, it can be solved for unknown ∆p as

∆p = W−1AT (AW−1AT )−1b (52)

which can also be written as a gradient,

∆p/∆K = −W−1AT (AW−1AT )−1[ω2F/K ω3F/K ω1T/K ]T (53)

In this analysis the range of the bending torsion coupling parameter is selected as 0 ≤ K ≤ 0.4GJ . In order
to find the path that guarantees minimum norm and keeping the interested frequencies constant, Eq. 53 is
integrated in this range with respect to K from K = 0 to K = 0.4GJ . The resulting frequencies of the design
without parameter sensitivity (∆p = 0) at K = 0.4GJ and of the minimum norm solution (∆pmin.NORM )
at K = 0.4GJ are compared with the initial design (K = 0) in Table 2. It can be observed that while there
are significant changes between initial and ∆p = 0 results, the minimum norm solution preserves the initial
frequencies as proposed. It can also be observed that the rigid modes, which are given as 1st lag and 1st flap
in Table 2, do not change as coupling parameter K is introduced and hence the exclusion of rigid modes is a
valid assumption.

Table 2: Comparison of blade natural frequencies at K = 0.4GJ

Frequency (/rev) Initial ∆p = 0.0 ∆pmin.NORM

1st lag 0.20 0.20 0.20
1st flap 1.02 1.02 1.02
2nd flap 2.58 2.55 2.58
3rd flap 4.44 4.25 4.44
1st torsion 4.77 4.64 4.77

The required change in parameters over this range is given in Figure 5. At any value of K, the corresponding
values of four lines give the ∆p vector and provides an engineering judgment about the feasibility of introduced
bending-torsion coupling K. It can be observed that, the mass of the blade should be reduced while other
parameters should be increased to preserve reference frequencies. Also the parameters that are related to
flapping frequency, m and EIy, are more sensitive to the problem as compared to the parameters related to
torsional frequency, Jp and GJ .
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Figure 5: Sensitivity analysis for Bending-Torsion Coupling

CONCLUSIONS AND FUTURE WORK

A three node finite volume rotating blade is formulated. For the blade model, sensitivity of inertial and elasticity
parameters are derived for blade natural frequencies. Sensitivity to actual beam section design parameters is
planned to be included in a future work. The model is believed to provide valuable engineering judgment in
the conceptual design phase of rotor blades. The aerodynamics formulation of the blade together with the
sensitivity formulations are currently under development with the objective of providing efficient methods in
rotorcraft aeroservoelastic design.
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