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SIMULATED FLUTTER TEST OF WINGS 

 
ABSTRACT 

Flutter is a dynamic instability which can result in catastrophic failures of an air vehicle. Flutter 
prediction analysis, ground vibration tests and flight flutter tests, are the most important certification 
processes in modern aviation. Flight flutter testing is a very expensive process. In flight flutter tests, 
the air vehicle is instrumented with exciters, accelerometers and transmitters to send the test data 
simultaneously to the ground station to be analyzed. Since flutter is a very severe instability, which 
develops suddenly, the data should be followed carefully by the engineers at the ground station and 
feedback should be provided to the pilot urgently when needed. Low test step numbers per flight, 
increases the cost of flutter testing. Increasing efforts in pre-flight test processes in flutter prediction 
may narrow the flight flutter test steps and decrease the costs. In this study, flutter prediction methods 
are investigated to aid the flutter test process for incompressible flight conditions. A simulated flutter 
test method is introduced utilizing the two dimensional typical section method. It is shown that with a 
simple two dimensional typical section method, flutter test simulation can be performed successfully 
as long as the typical section model approximates the dynamic properties of the wing closely. 
 

INTRODUCTION 
Flutter is a dynamic instability problem which occurs by the interaction of the elastic, inertia and 
aerodynamic forces. It can result in catastrophic failure of the wing, winglet, fin, vertical and horizontal 
stabilizer or any aerodynamic surface that is subjected to it. 

The structure’s response to the unsteady aerodynamic forces occurs with a damping effect at low 
speeds. This response increases with speed up to a critical speed level. At this critical speed level 
some of the structure’s elastic modes are coupled by aerodynamic forces. This causes energy transfer 
from the airflow to the structure which results in increasing oscillations. The amplitude of these 
oscillations increases violently with a little speed increment so that the person who controls the aircraft 
may not response before catastrophic failure occurs. 

In theoretical background, Theodore Theodorsen introduced the Theodorsen Function C(k), for the 
steady motion and sinusoidal motion in his report [2]. In this report the wing section is modeled as a 
flat plate assuming that it oscillates about elastic axis. Theodorsen investigated the effects of the 
parameters such as mass ratio, bending torsion frequency ratio, dimensionless static unbalance, 
dimensionless radius of gyration to critical flutter speed and frequency. Theodorsen and Garrick 
suggested a numerical approach to solve flutter problem and compare their solution with wind tunnel 
test results in their report [2]. 

After the work done by Theodorsen and Garrick, various flutter prediction methods are developed by 
researchers. k-method which is also known as American method or Air Material Command Method in 
the literature is used by Smilg and Wessermann [3]. In the k-method, an eigenvalue problem is built 
and solved by the addition of an artificial damping term. In the first half of 1950’s Irwin and Guyett 
presented p-k method which is also known as the British method in literature [4]. P-k method is an 
approximate method constructed to find out the decay rate. In both methods for solution damping vs. 
speed curves are plotted, although damping values determined are physically meaningless except 
around the flutter boundary at which the damping value is equal to zero [5]. 
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Dimitriadis and Cooper investigated the damping variation with airspeed, flutter margin, envelope 
function and Autoregressive Moving Average-Based (ARMA) methods to predict flutter from flight 
flutter test data [6]. They introduced simulated flutter test and outlined the steps to perform it. 

The main aim of this study is to get the sub-critical damping trend from a simple analysis to aid the 
actual flutter test planning. In the actual flutter test of aircraft, critical structures such as wing, tail plane 
are excited by external exciters and damping is estimated either online or off-line for each test speed 
until the dive speed. The damping trend obtained until the dive speed is then extrapolated to zero 
damping to predict the flutter speed. Obviously, in simulated flutter test damping estimates can be 
made until flutter speed. The critical issue in the damping trend is to decide whether the flutter is mild 
flutter with gradually decreasing damping or explosive flutter with sharp decrease of damping once the 
flutter speed is approached. Deciding on the flutter type, mild or explosive, is very important to make 
appropriate plans for the flutter test. Explosive flutter is very dangerous since damping decreases 
suddenly with slight increases in airspeed. Therefore, in this study with simple 2D typical section 
models, sub-critical damping trend is studied and demonstration of the simulated flutter test is made 
via time domain solution of the governing equations of motion to decide on the flutter type, and also on 
the flutter speed. Flutter speed obtained through simulated flutter test is compared with the results 
obtained by the k and p-k methods. For this purpose, 2 degree of freedom typical section model is 
introduced and equations of motions are derived for incompressible flow. A code is generated for 
flutter solutions using k-method and p-k method. Comparisons of the flutter speed obtained by the 
frequency domain solution methods k and p-k are made with the simulated flutter test solution to see 
how closely the simulated flutter solution predicts the flutter speed. 

 

METHOD 

Mathematical Modeling of 2 DoF Typical Section Model and Equations of Motion 
Figure 1 shows the location and description of the coordinate system used and some dimensional 
quantities of primary interest in modeling the typical section aeroelastic system. This airfoil is a 
representative “2 DoF typical section” used by Theodorsen and Garrick in their famous reports [1],[2]. 
They suggest that for the purposes of theoretical flutter prediction, inertial and geometric properties of 
a large span and straight wing can be represented by a typical section with inertial and geometric 
properties of the wing at ¾ of the distance from root of the wing. This suggestion holds where the 
aspect ratio is large, the sweep is small, and the sectional characteristics vary smoothly across span.  

 
Figure 1. The 2 DoF Typical Section [7] 

 

In Figure 1, z=0 line represents the undeflected airfoil centerline, “b” is the half-chord length, “a” is the 
ratio of the distance between the centerline and the elastic axis to the half-chord length “b” xα is the 
ratio of distance between the elastic axis and the center of gravity of the airfoil to the half-chord length 
b, h is the deflection of the airfoil in plunge direction and α is the deflection angle in pitch direction. Kh 
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and Kα are the restraining spring stiffness values in plunge and pitch degree of freedoms, respectively. 
L is the aerodynamic lift force and My is the aerodynamic moment. 

The general equation of motion for the typical section model can be expressed in matrix form. 

                                       [ ]{ } [ ]{ } [ ]{ } 0)(23 =−+ ∞ qkAbqKqM ωπρ&&                                       (1) 

where [M], [K], [A], {q}, ρ∞, ω are the mass, stiffness and aerodynamic coefficient matrix, generalized 
coordinates vector, density of air and frequency respectively. In Eq.(1), aerodynamic coefficient matrix 
is obtained for the simple harmonic motion of the typical section model.  

k Method 
In this method an artificial damping term is introduced to the aeroelastic system equation. The terms in 
the equation are simplified by nondimensionalizing and then the simplified equation is solved and the 
eigenvalues for aeroelastic modes, which is defined as a function of artificial damping, are obtained. 
The values of damping are obtained for a range of reduced frequencies. The point where the value of 
this damping goes to positive from negative is the point of flutter. Flutter speed and flutter frequency 
are obtained after determining this point [8]. 

p-k Method 
In comparison to k-method p-k method is more sophisticated, because in p-k method frequency 
matching process is performed. It is an iterative process which includes the calculation of the 
eigenvalue p for a pre-assumed reduced frequency k, and computation of k from the calculated p 
value until the k values converges. This process is performed for the whole speed range of interest. 
Then, similar to k-method the graphs, U vs. ω (airspeed versus frequency) and U vs. g (airspeed 
versus damping) are plotted to find out the flutter speed and the frequency. 

Simulated Flutter Test of Wing Based on a Typical Section Model 
The main aim of this study is to get the sub-critical damping trend from a simple analysis to aid the 
actual flutter test planning. In the actual flutter test of aircraft, critical structures such as wing, tail plane 
are excited by external exciters and damping is estimated either online or off-line for each test speed 
until the dive speed. The damping trend obtained until the dive speed is then extrapolated to zero 
damping to predict the flutter speed. Obviously, in simulated flutter test damping estimates can be 
made until the flutter speed. The critical issue in the damping trend is to decide whether the flutter is 
mild flutter with gradually decreasing damping trend or explosive flutter with sharp decrease of 
damping once the flutter speed is approached. Deciding on the flutter type, mild or explosive, is very 
important to make appropriate plans for the flutter test. Explosive flutter is very dangerous since 
damping decreases suddenly with slight increases in airspeed. Therefore, with simple 2D typical 
section models one can study the sub-critical damping trend and decide on the flutter type via 
simulated flutter test as long as typical section model represents the key parameters of the actual wing 
closely. However, in any case simulated flutter test approach gives an opportunity to train the flutter 
test engineer with regard to what actually could happen in an actual flutter test by studying the 
damping trend.  

For simulated flutter test, first lift and moment equations are derived in time domain for a typical wing 
section model which is used in the simulated flutter test. Non-dimensional time parameter is 
introduced and the equations of motion for a 2 DoF typical section model given above, are defined in 
the non-dimensional time domain. A time dependent external excitation is introduced and the 
aeroelastic response equations of a two dimensional lifting surface subjected to this external excitation 
is derived in time domain. To have the response in time domain first Laplace transform of the 
equations of motions including the aerodynamic terms and, excitation terms are taken. Finally, by 
taking the inverse Laplace transform of the pitch and plunge responses, time domain solutions are 
obtained. A case study is introduced and the flutter speed parameter is also calculated for the case 
study using k method and p-k method to compare the flutter speed obtained by the simulated flutter 
test with the k and p-k method of solutions. A code is generated to calculate the responses in time 
domain for the case study by performing the inverse Laplace transforms for a range of velocities 
starting from a sub-critical speed getting closer to the flutter speed. For each velocity case, amplitude 
vs. time plots are determined. Damping for each velocity case is calculated using logarithmic 
decrement method, using the amplitude vs. time plots of the pitch and plunge responses. After 
performing this process for all velocities, damping vs. velocity plots are established. Extrapolating the 
plots, the velocity value corresponding to zero damping is found out and the results are compared to 
those determined using the p-k method. 

The equation of motion for the typical section model in non dimensional time domain can be written as 
[9]  
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where 
α : Pitch motion of airfoil. 
F : External excitation force. 
h : Plunge motion of airfoil. 
L : Aerodynamic lift force acting at the elastic axis. 
m : Mass of the typical section. 
M : Aerodynamic moment about the elastic axis. 
rα : Nondimensional radius of gyration about the elastic axis. 

V : Reduced velocity (
αωb

U
V = ) 

Xα : Nondimensional distance between the elastic axis and the center of mass. 

τ : Nondimensional time (
b

tU∞=τ ) 

ωα, ωh: Natural pitching and plunging frequency. 
 

The equations of pitch and plunge responses in Laplace domain can be determined as [9]: 
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where, σ (
αω

ωσ h= ), µ (
2b

m

πρ
µ

∞

= ) and φ are the ratio of natural frequencies, mass ratio and 

Wagner’s function respectively, and  “^” represents parameters whose Laplace transforms are taken. 

Wagner’s function describes the growth of circulation and its approximate expression is given by [9]: 

 
τττφ 300.00455.0 335.0165.01)( −− −−= ee                                    (6) 

Grouping the same terms together Equations (4) and (5) above can be written as:  

             
22

)(ˆ
ˆ)(

ˆ
)(

bVm

sF
sB

b

h
sA

αω
α =+

 

(7) 

        
0ˆ)(

ˆ
)( =+ αsD

b

h
sC

 
(8) 

where 

                

22
2

2 1
)(ˆ

2
)( sss

V
ssA

µ
φ

µ
σ ++






+=
 

(9) 



 
AIAC-2013-048                    Balevi & Kayran 

5 
 Ankara International Aerospace Conference  

 

                    

sassasssXsB
µ

α
µ

φ
µα

1
ˆ

1
)(ˆ

2

12
)( 222 +−















 −++=
 

(10) 

                

( ) 2
2

2
2

2
2

1
)(ˆ21

1
)( as

r
ssa

r
s

r

X
sC

ααα

α

µ
φ

µ
−+−=

 
(11) 

         

  

( )

2
22

22
2

2
22

2

1

8

1

2

11

1
)(ˆ

2

1
21

11
)(

s
r

sa
r

sa
r

sassa
rV

ssD

αα

αα

µµ

µ
φ

µ

+






 −+

+














 −++−+=

         (12) 

Solving the equations for pitch and plunge, one gets the responses in Laplace domain as [10] 
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Taking the inverse Laplace transforms of the Equations (13) and (14), one gets the responses in non-
dimensional time domain. 

Simulated Flutter Test Method 
The main aim of this study is to get the sub-critical damping trend from a simple analysis to aid the 
actual flutter test planning. Simulated flutter tests are performed for a case study using a similar 
method introduced in Reference [6]. The simulated flutter test method is performed by following the 
steps listed below.  

1. First, p-k method is applied to a typical section model of the wing and a flutter speed is 
predicted. 

2. Excitation with respect to reduced time is introduced. 
3. Using Equations (13) and (14) response of each mode is obtained at a speed equal to the 

22.7% of the flutter speed parameter calculated in the first step [6]. The responses are 
analyzed to provide estimates for the damping ratios. Logarithmic decrement method is used 
to determine the damping ratios. 

4. The flight speed is increased by an increment equal to the 7% of the predicted flutter speed 
parameter and estimates for the damping ratio are obtained [6]. 

5. The flight speed is increased again by the same increment of the predicted flutter speed 
parameter and estimates for the damping ratio are obtained. The curve of estimated damping 
ratios vs. flight speed is plotted. The next flight speed would be an extra addition of 7% of the 
predicted flutter speed parameter predicted in the first step to the latest flight speed.  

6. The plot is extrapolated using cubic piecewise polynomial method to cover the next flight 
speed. In cubic piecewise polynomial method, a third degree polynomial is assigned for each 
interval. At the knot points, the first and the second derivative values of the neighboring 
polynomials are equal to each other.  

a. If the extrapolated curve does not intersect the zero damping line step 5 is repeated 
for the next flight speed and a new extrapolated curve is obtained. 

b. If the curve intersects the zero damping line at a speed, and 80% of this speed is 
higher than the next test speed step 5 is repeated [6]. 

c. If the curve intersects the zero damping line at a speed, and 80% of this speed is 
lower than the next test speed, test is stopped and the speed where the curve 
intersects zero damping line is accepted as estimated flutter speed.  

Simulated flutter tests are performed for a 2DoF typical section model. Tests are performed at the sea 
level. The properties of the typical section model are given below. 
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Using the p-k method, the plots given in Figure 2 are obtained. Predicted flutter speed parameter is 83 
m/s as seen from Figure 2. This value is used in simulated flutter test to determine the test speeds. 

 

 
Figure 2. Damping vs. speed curve of p-k method solution 

 

For the external excitation to be used in the time domain analysis, a blast load is modeled. Blast 
loading which changes with respect to reduced time is given by Equation (16). 
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where, H is the unit step function. 

The first test speed is taken as 18.841 m/s which is the 22.7% of the predicted flutter speed parameter 
83 m/s. For the test speed of 18.841 m/s, the excitation is applied at the elastic axis and the Laplace 
domain responses given in Equations (13) and (14) are obtained for the excitation. The equations are 
first converted from Laplace transformed domain to dimensionless time domain, and then to the time 
domain. It should be noted that taking the inverse Laplace transforms of Equations (13) and (14) by 
hand is almost impossible. A proper mathematical tool which has an efficient symbolic toolbox should 
be chosen to solve these equations since equations are very complicated and the time domain 
solution is performed parametrically. When the expressions for the responses are obtained in time 
domain, the time interval of interest is substituted into these expressions and response vs. time plots 
are determined. The peak points of these plots are used to estimate the damping ratios using the 
logarithmic decrement method. It should be noted that to examine how the excitation induced vibration 
dies out the time interval chosen should not interfere with the time region when the excitation is being 
applied. Logarithmic decrement is the logarithm of the ratio of two successful cycles’s amplitudes of a 
dying out free vibration [11]. Damping ratio is expressed as a function of logarithmic decrement in the 
logarithmic decrement method. It is one of the most popular experimental damping estimation 
techniques. Logarithmic decrement is expressed as [11] 
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where n denotes the number of cycles and x denotes to the amplitudes of the peaks. The relation 
between logarithmic increment and the damping ratio is given as [11] 

 

                    π
δ
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δ

24 22
≅

+
=g

  
(18) 

One should note that δ2 in the denominator can be neglected since it is very small compared to 4π2.  

First, bending mode responses are analyzed. Using the generated MATLAB code, the response vs. 
time curve in the interval of 2-4 seconds is plotted in Figure 3 for the first test point speed 18.841 m/s. 
Figure 3 shows that bending response is a damped oscillation which indicates that the wing is free of 
flutter at the test speed of 18.841 m/s.  

 

 
Figure 3. Bending response at 18.841 m/s, 22.7% of the predicted flutter speed 

 

Applying the logarithmic decrement method to the response vs. time plot given in Figure 3, the 
damping ratio for the test speed of 18.841 m/s ( 22.7% of the predicted flutter speed) is calculated as: 

                         0281.07.22 =g  
(19) 

The second test speed is 24.651 m/s which is the 29.7% of the predicted flutter speed parameter 83 
m/s. Having the response vs. time plot using the MATLAB code and applying the logarithmic 
decrement method, the damping ratio for speed 24.651 m/s which is the 29.7% of the predicted flutter 
speed is calculated as:  

                         0387.07.29 =g  
(20) 

Following the same steps, the damping ratio for the next test speed 30.461 m/s which is the 36.7% of 
the predicted flutter speed is obtained as: 

                         ,0503.07.36 =g  
(21) 

The curve of estimated damping ratio vs. flight speed is plotted and extrapolated using cubic 
piecewise polynomial method to cover the next test point which is at 36.271 m/s to check the stability 
of that point. This curve is given in Figure 4. The red vertical line indicates the next test point. It can be 
seen that the next test speed is safe from flutter since the extrapolated damping vs. airspeed curve 
does not intersect zero damping line. Therefore, one can proceed with the next test point.  
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Figure 4. Extrapolated damping vs. speed curve for the first three test points 

 

The same procedure is followed checking the stability of the next test point before going for the next 
point. For 4th and 5th test points the following damping ratios are obtained using logarithmic 
decrement method and response vs. time plots.  

                         
0793.0g

0634.0g

7.50

7.43

=
=

 (22) 

Extrapolated damping vs. speed curves are plotted in Figure 5, and the stability of the next test point is 
checked for each one.  

 

 
Figure 5. Extrapolated damping vs. speed curve for the first four and five test points respectively. 

 

Damping ratio for the 6th test point is calculated as 0.0957 and the extrapolated damping vs. speed 
curve is plotted for the first six test points. The plot is given in Figure 6. 
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Figure 6. Extrapolated damping vs. speed curve for the first six test points. 

 

As can be seen from Figure 6, flutter speed is estimated as 85 m/s. The vertical red line indicates the 
7th test point. One should remember the stability criteria, which is stated previously, for the next test 
point. If the damping vs. airspeed curve intersects the zero damping line at a speed and 80% of this 
speed is lower than the next test speed, test is ended. The vertical blue line shows the 80% of the 
estimated flutter speed. Since 80% of the estimated flutter speed is higher than the next test point 
speed one can continue to the next test point which is 53.701 m/s. 

The damping ratio is calculated as 0.1176 for the 7th test point, and the extrapolated damping vs. 
speed curve is plotted for the first seven test points. The plot is given in Figure 7. 

 

 
Figure 7. Extrapolated damping vs. speed curve for the first seven test points. 

 

As can be seen from Figure 7, 59.511 m/s test speed, which is test point 8, is clear from flutter. So test 
is continued for the 8th test point. The damping ratio is calculated as 0.1387 for the 8th test point. 
Extrapolated damping vs. speed curve for the first eight test points is given in Figure 8. 
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Figure 8. Extrapolated damping vs. speed curve for the first eight test points. 

 

As can be seen from Figure 8, flutter speed is estimated as 83 m/s. The vertical red line indicates the 
next test point. The vertical blue line shows the 80% of the estimated flutter speed. Since 80% of the 
estimated flutter speed is higher than the next test point speed, one can again continue to the next test 
point which is 65.321 m/s. 

The damping ratio is calculated as 0.1570 for the 9th test point and the extrapolated damping vs. 
speed curve is plotted for the first nine test points. The plot is given in Figure 9. 

  

 
Figure 9. Extrapolated damping vs. speed curve for the first nine test points. 

 

From Figure 9 for test point 10, for the 71.131 m/s speed the flutter clearance is ensured. So, test is 
continued. For test point 10 damping ratio is calculated as 0.0855, and the extrapolated damping vs. 
speed curve is plotted for the first ten test points. The plot is given in Figure 10. 
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Figure 10. Extrapolated damping vs. speed curve for the first ten test points. 

 

From Figure 10, flutter speed is estimated as 74 m/s. The vertical red line indicates the next test point. 
Since the next test point 76.941 m/s is greater than the estimated flutter speed test is ended. The final 
estimation for flutter speed for bending mode by simulated flutter test for the case study is determined 
as 

                         m/s 74=fU  
(23) 

 

One should notice that in the earlier test steps, higher flutter speed estimations were made. Relying on 
those estimations and skipping the presteps may cause dangerous situations in real flight flutter 
testing. This case study shows how crucial incremental approach is in flight flutter testing. 

Torsion mode simulated flutter test results are also analyzed following the same test steps. The 
simulated flutter test results for the first eight test points are given in Figure 11. At the test point eight, 
stability check for the next test point fails and therefore test is ended. Test results for the test point 
nine is given in Figure 12. The final estimation for the flutter speed for torsion mode by simulated 
flutter test for the case study is determined as 

                         m/s 80=fU  
(24) 

 

It should be noted that using the p-k method, the flutter occurence is expected in torsional mode at a 
speed of 83 m/s. Analyzing the damping trends of the time responses both in bending and torsional 
modes, one can see flutter is induced in both modes at close speeds.  
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Figure 11. Extrapolated damping vs. speed curve for the first eight test points for the torsion mode 
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Figure 12. Extrapolated damping vs. speed curve for the first nine test points for the torsion mode 

 
A further study is also conducted in which the 2D typical section on which the simulated flutter test is 
performed is subjected to a sinusoidal excitation and the results are obtained following the same 
procedure that has been used in performing simulated flutter tests using the blast loading as the 
external excitation.. However, in this case, the stability check for the next test point is excluded to see 
how the damping changes while getting close to the flutter speed. Figure 13 shows the sinusoidal 
excitation which is given as force vs. dimensionless time plot. 

 
 

 

Figure 13. Sinusoidal excitation used in simulated flutter test 

 
Response plots for pitch and plunge motions are plotted for 22.7%, 29.7%, 36.9%, 43.7%, 71.7% and 
from 90% to 100% by 1% increments of the predicted flutter speed by the p-k method. Damping 
estimations are obtained using the logarithmic decrement method at each speed. Cubic piecewise 
polynomial interpolation is used to generate curve fit through the discrete data points. Figures 14 and 
15 give the damping versus airspeed plots for the plunging (bending) and pitching (torsion) modes, 
respectively. From Figures 14 and 15 one can notice that the estimated flutter speeds for both modes 
using time domain solution are between 99% and 100% of the predicted flutter speed by the p-k 
method. Namely, for bending mode estimated flutter speed is 82.805 m/s, and for the torsion mode 
estimated flutter speed is 82.718 m/s. 
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Figure14. Damping vs. speed curve for the bending mode for the sinusoidal excitation 

 

 

Figure15. Damping vs. speed curve for the torsion mode for the sinusoidal excitation 

 
Response vs. time plots for the bending and the torsional modes are given in Figure 16 for the 99% of 
the predicted flutter speed by the p-k method, and the response vs. time plots for the bending and the 
torsional modes are given in Figure 17 for the 100% of the predicted flutter speed the by p-k method. 
 
One can notice that the plunge and pitch responses shown in Figure 16 are lightly damped, while the 
responses given in Figure 17clearly show diverging behaviour. As seen from the results obtained 
using the time domain solution and the p-k method solution, very close results are obtained for flutter 
speed. However in time domain solution, flutter occurrence is predicted in both modes. 
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Figure16. Response vs. time plots for bending and torsional mode for 99% of the predicted flutter 
speed by p-k method 
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Figure17. Response vs. time plots for bending and torsional mode for 100% of the predicted flutter 
speed by p-k method 

 
CONCLUSION 

Simulated flutter test method is an appropriate method to gain insight about the real flight flutter 
testing. One can get the simulated test data after complex time domain analysis which is similar to the 
test data of a real flight flutter test. The major difference of the simulated test data, from the real flight 
flutter test data collected by accelerometers is that it does not contain noise due to experimental 
deficiencies. Simulated flutter test may be very helpful to determine the test points which will be used 
in the flight flutter tests since the damping trend is traced every time a new test point is added to the 
damping versus airspeed curve. Simulated flutter test approach gives an opportunity to train the flutter 
test engineer with regard to what actually could happen in an actual flutter test by studying the 
damping trends. In a real flutter test, decision to continue with the next test point is based on the value 
of the flutter speed predicted by the extrapolation of the damping vs. airspeed curve. Extrapolation of 
the damping vs. airspeed curve is performed every time a new test point is added. In this respect, 
simulated flutter test provides the flutter test engineer with the necessary background on what to 
expect in an actual flight flutter test. 

In the present study, damping vs. speed curves are obtained using time domain solutions. Blast and 
sinusoidal type external excitations are used to obtain time responses for the bending and torsion 
modes. It is shown that if the damping estimates are obtained up to speeds close to the flutter speed 
determined by the p-k method, flutter speed obtained by the time domain solutions is in excellent 
agreement with the flutter speed predicted by the p-k method. However, in time domain solutions 
flutter is predicted in both modes whereas p-k method predicts flutter only in one mode.  

It should be noted that in this study only incompressible flow is investigated. In further studies 
compressible flow and supersonic flow may be covered. In the simulated flutter test section only 
damping extrapolation method is used to estimate flutter speed. In the future, other methods such as 
flutter margin, envelope function and Autoregressive Moving Average-Based (ARMA) methods may be 
used to analyze the simulated flutter test data. 
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