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ABSTRACT

Favre Averaging also known as Mass Averaging isteroway of time averaging that can be used toinobta
statistical means of quantities varying randomlytime. Here the emphasis is on a different deénitof
averaged quantity, though averaging process is agaegular time averaging. This averaging (faity Favre
averaging) applied to instantaneous Navier-Stokeb ralated governing equations of turbulent flowcomn-
pressible fluids, show a marked advantage on qmoreting fundamental equations obtained with Reysold
averaging (also regular time averaging or regaN@raging in the sequel).

This presentation reminds the essentials of Faveeaging and gives the fundamental equations ofntean
flow under the comprehensive title of FANS EQUATIONi.e. Favre Averaged Navier-Stokes) comprising
equation of continuity, momentum and energy. Thaeidbadvantages relative to correponding RANS equoati
are shown and discussed.

Closure problem cannot be said that it is consitlarel no CFD solution is given.

CONTENT: Introduction- Favre averaging princigiouble and triple correlations.
FANS Equations- Continuity; Mentum; Energy
Discussion: Favre averagingiast Reynolds averaging. Two energy equationssé€qurences.
Interactiohmodes. Can molecular re-activation be relateghtysics of turbulence?
Conclusion.
Note: Why “again” in the title

INTRODUCTION

Favre averaging is an averaging on time dependpam@meter of randomly varying quantities. The ayieig
process, so called “Favre averaging”, is for tuebtiflow quantities of compressible fluids as farttae author of
this presentation is aware of. Its formal definitits, Favre (1965):

1 pQ = pQ

where p” is the mass density of the compressible fluidj &Q” is any instantaneous scalar quantity (physica
properties or components of tensor quantitiesydfulent flow field of this fluid. Single overbaedotes regular
time averaging and double overbar Favre averagadtr&plitting instantaneous quantities is donéfsws:

2 Q=Q+q and Q5+q” (O=[._)+p' always)

where primed symbols refer to randomly fluctuatpagt of quantities, respectivly used in regular fregs ()
and Favre splitting (*). It is reminded that stitial averages (time averaging in this case) atermhinistic: a
premise of the turbulent flow.

The basic forml together with splittings o® yields:

3 p_Q:(E>+p'[3+q'):53+EQ+W:B

+pd’
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The group56= 0, since with regular averagina = 0. Therefore in view of the basic relatioh),(one
obtains:

4 pd' =0.

It is remarked that in case of regular time averggone finds:
5 0Q = p+pf+a)=pQ +pa +pQ + PG =pQ +P d
Therefore, sincep_Q is unique (or frond):

6 PQ=pQ +P Qg =p and

It is worthwhile to look at double and triple cdaeons multiplied by the density.
Consider two turbulence quantities @hd Q of a compressible fluid and the time average efrtbroduct
multiplied by the fluid density. The following liseare self explanatory.

PQQ; = (5+p'(z+q'ij(Q=z+q£) = (B+p'XQ1Q2 +q'iQ=z+q'E+d'1q'z')- Hence:

8 PQQ, = PQQ, + P -

For the same quantity RANS averaging yields:

PQIQ, = PQQ; +Bq‘1q'2 +p CI1Q_2 +p q'zal +p qllq‘Z

Similar process can be used for triple product.
9 pQ0Q,0; = [p+o )+ JQz + i JQs + i) =

P+ #) Q10205+ Q2Qs *3Q1Qs *i5QUQ, * il Qs+ diisQ + sy + i |

which results in:

10 PQQQs = PQIQ,Qs + PT;dzQs + Ptz Q, + PALMzQ: + P, -
At this stage it is observed that relations l&eand10 contain much less number of correlations of flating
parts of turbulence quantities when averaging isxewith 1.
FUNDAMENTAL EQUATIONS FOR TURBULENT FLOWS
OF COMPRESSIBLE FLUIDS
Equation of continuity, momentum and energy aresicared in turn.

Continuity: Instantaneous equation of continuity is:

11 p.*tpU;); = 0
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Ujis " component of instantaneous velocity vecamd subscripts 4”,and “ ;” represent partial derivatives
with respect to “j component of position vectdr and time “t", respectively. Summation convention is
observed on repeating indices within a term.

Splitting with respect t@ and averaging consideringyields:

12 put U] = 0

which is the equation of continuity in FAVRE aveiraggof a compressible fluid. This equation doesauoitain
any term in fluctuating components of either demsity or the velocity vector. On the other hahé, conven-
tional splitting and averaging afl yields:

13 D+ (p_uj+p'u',»],,-= 0

The advantage is clear.Yet, the instantaneous iequatt continuity for fluctuating terms, obtaineg taking the
difference betweefl and12is:

14 P +oui), +(DU_J)J =0
which is similar to the corresponding equationgmis of Reynolds splitting, i.e:
15 P +(pU})’i+(F"Uj)'1= 0

Momentum equation: Familiar form of instantaneous momentum equatioa cdmpressible fluid with negli-
gible weight (per unit volume), written in cari@siframe is:

DU,

16 —_—1 =
P Dt

2
0-ij T (_ paij + Tij ))j = ‘[p+§H9}i + Z(U-Eij ),j
where

1: Gij = —[p+§p.9j5“ + ZHE“

is the stress tensor witly “ as the Kronecker delta. The viscous part of tressttensor is:

2
Tj = Ojj — (_ paij) = _§“e6ij +2UE; .
Therefore: Gj = — P + T -

2
2: —gu stands for the special second Lamé constaneiw uf second Stokes assumption (though

a general™ could have been used),

3: 0 =Uj; stands for dilatation, i.e: time rate of relatixdumetric deformation,

4: [ is the rate of strain tensor, i.g; E%(Ui ,j+Uj,i).

‘p—DDL:i " is the inertia force per unit volume arwén be expressed with the help of the equation of

continuity as: p% = (DUi )vt+(pUi U; )’j :

The left hand side df6 can be Favre averaged and wheand8 are applied the result is:
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bQ_
Dt

DU, — ——— p—
17 th': m)t + (PUi U +py y; )*j

which, considerind.1 becomes:

In fact, this expansion is valid for any transfdegroperty “Q”, i.e: p

(pQ)*t +(PQU]' ),j .

DU -DU ——
18 — 1= p—L 4 u i
P Dt p Dt PY Uj,j

Right hand side of6is reconstructed with the following premises.
1: presure is replaced by temperature thighhelp of the equation of state:

pgR T inwhich “R” is the gas constant and * & the temperature. Hence:
19 P=pRT. and pT =0

2: coefficient of dynamic viscosity is takimto account as:

20 U= pV  with ﬁ=p_)3 and pv =0.

Then, the right hand side &6 reads in the first place as:
2 2
21 -(p+§u9]n + Z(UEij )'i :_(RPT‘LEPVB}H' Z(F)VEij )’j

and its averaged form becomes:

> = 20— 2=\ =
22 —(p+§u6j,i+2(uEij ))i = —[RPT +§pV9+§PV 0 j’i + 2pvE; +pv E )’J’

Therefore the Favre averaged momentum equatiobeavritten as:

- DU, TNT —— 2—== 2 = T
23 p Dtl + Py; U ,j:—(RpT+§pv6+§pv 0 j,i + Z(vaij +pv Eij),j
or:

DU, (= 2= L | T (2 —

24 th' = -(RpT+§va)j,i + 2|pVE; ),j -pu u;,; —(gpv 0 j’i + Z(pv Eij),j
or:
25 p—i= - _+2_=E + 2 E_) u, -[2 9 |, + ' E;

PF- p EPV i i pi —PU Uj,; EPV i PV By i

Energy equation:; The instantaneous differential equation of enevgthout any direct heat added or taken out
during the process, may be expresed in two diftefiegms:

A: Direct application of the first law of thermodynis leads to:

D U?
26 Pa[e”’?]] = o5 U; ) +kT ),
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B: The latter equation can be organized to have oefhéand side the substantial derivative of tetathalpy.
One ends with the familar form of the energy eaqrati

Dh
27 P dtT =P, t (TijUi)’j + (kT'j)vJ
where:
u? UE; 2
total enthalpy che+PiTiopn e i CoT +—L
o 2 2 2

with “h” as the static enthalpy, “e” internal engrdoth per unit mass) and ‘xCas the specific heat of the gas
at constant pressure.

Each of these two energy equations @@&and27) is treated below.

A: 26 can be reduced to a more managable form:

. D u? De D (U2 De DU,
since: —|e+—| =p— + p—|—| ;then: p— + pU,——L ={o; U ),; +\KT,; ),;
th( 2} th th( 2) th PYi Dt (u I)J ( J)J

With the help ofl6,and decomposition of the terms following the thegliality sign, one obtains:

De
Por * i Ui= gj.,; U +0; Uy +(kT,),
The ultimate result is:
De
28 P— =g U;, +(kTy); = -po+ U+ (kT )

Dt

Right hand side of the first equality sign is exgaah as:
2 2
0; U; vj+(kT!j )ij = {-(wgue]% +2“Eij:|ui gt (kT ), = —(p+§u9j9+ 2uU; ,; Ey +(kT,),

But the part of the viscous dissipation term camtayj rate of strain can further be simplified as:
U, E = (B +oy By = Ef

since W, Eij =0, where w;” is the unsymmetrical part of the velocity gradiesnsor ‘U, ,;”. Hence

']
the energy equation in the form2% becomes:

De

29 == -
P bt

(p+§“6]6+ 2[.1E5+ (kT,i),i = —pb+ (kT’i )'i +®

2
Here () :—§u62+ ZHEE: —p[§92 - 2E§j
is the viscous dissipation term.

The splitting of26 according to Favre and averaging yields:

De —= J— Do _
30 paz (pe)n"' (Per )’j = (pe),t + (peU] +pe UJ- )'j = pE.F e uj )’j
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for the left hand side. The option of replacing leterms of “T",i.e: e=¢T and e"=G T", can be done
directly; since such a change will not alter theatipn and will not provide additional correlatiterm(s) if G
is taken as a constant.

The instantaneous right hand side is—:(p+§ueje+ ZuEf + (kT,i ),i

In the following treatmentl9and20 are observed; hence the average of the right sidiedof 29 becomes:

[— _

-RpT' 6 —gép\i'e" —nge”Z —gp\)”e”2 + 2(vai172+2Eijp\)'Eij'+pv"E'ij'.2j

Therefore Favre averaged form of the Energy equagio

32 P

9|Qu

= 2 - — 4= 2= =
[p+ p9j9+2pE +F,j),j—RpT6 —gep\)e —gvpe +

+2(va"-2+25]- pv Eijj —3™ 02+ z(pv Eij.z) - (pe uj ),j

B. The alternative energy equatiai may also be treated in a similar way.

Dh
27 (repeay —TL =p, ( i)'j + (kT’j)*j
Left hand side is:
Dh; D u? Dh DU, h
il SR LT PN — + Ug;
Pt th( 2} Pt p'Dt p 0

and

Dh Dh
p_+U0I]]=pD Up,,+UT,J]

expanding the right hand side :

Dh
th Up,, | IJ ] pt+(rijUi)'j+(kT’j) - +U|Tu J+T U (kT’j)’j
yields 27 as:
Dh _ Dp
33 por = o TVt ),

The last equation will not be considered for furtbevelopment as explained below (item Défccussion.

SOME DISCUSSION

1: The set of equations composed of continuity, moomardand energy are referred as fundamental equations
distinguish them from governing equationsusbtilent flows comprising closure formulations artder
auxilliary relations in addition to fundamahéquations.

2: Equation33 does not express any advantage compargé.t€ontrary, both sides 083 contain
total derivative of pressure in some form, abhis a repetition from physical point of view,etbfore
an unnecessary burden for calculations. HeB8ds not carried further.

On the other hand, arguments relate2dforwarded in the sequel, could have been repdate?B,
(if for some reason there is interest).

6
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3: FAVRE averaging leading to FANS equations comgasfel2, 25, 32are fundamental equations for
the study of linear Stokes fluids. During thexivation of these equations, Stokes second aggump
leading to the definition of second Lamé canst)”, i.e. the compressibility constant in terms of
dynamic viscosity, is used . This is done fashelp an easy comparison with RANS or NS equati
developed commonly with the same premiserfooinpressible fluids.

Similar argument is used when perfect gadioglas introduced to relate pressure to tempeeafia mass
density. If the study warrants, these simgdifions can be replaced by more accurate and Ruilhtions.
In the same spirit, calorically perfect gasuasption will be used when discussing further difiicptions
of fundamental equations.

It is to be noted that these considerationea@camper the advantage of FAVRE averaging pnaesd

4: The reduction in the number of correlations ieButhe advantage of FAVRE averaging.This can be
seen by comparing the number of scalars defiténsors quantities in RANS and FANS equatiores du
to fluctuations.
TABLE

Number of inéeplent scalars* appearing in correlations for IDvé

EQUATION(s) RIS RE
Continuity 12) 1X3 =3 -
Momentum25) 1X15+1X10+27=52 1X6+1X3+1X6 = 15
Energy 82) 1X4X3+1X4X3+1X15+ IX3+1X3+1X13+1X12+

+1X15-681X15+1X15= 90 +1X6+1X3+1X12+1X3 =45
Another avenue of comparison is possible.

A: The Favre averaged form of the equation of caitiiradmits a correct (i.e: physically consisteafinition
of streamline without any flow across the streamli®n the other hand , Reynolds averaging of tmeesa
equation contains the additional term of:
PU;,
which does nonhfirm the definition of streamline based
on mean velocity resulting from Reynolds averaglraje (1994).

B: The associated terip' u'i appers as a source term: this point wise souroe lblecomes positive or negative

depending on the flow conditions. A source ternmafss may indicate that the mathematics does potsent
the physics adequately, Spina et al.(1994).

Further discussion of relative merits or disadvgetaof FAVRE averaging vs. Reynolds averaging eafobnd
in Lele (1993).

C: The number of correlations that for one or othesson is omitted from the equations is less inré-av
averaging. Then, it is possible to say that massaming reflects the physics of turbulent behavedequately.

5: The fundamental equatiomierived so far, i.e12, 25and32, are exact to the extent that the instantaneous
equation are exact. In spite of the fact that FANSlamental equations have a marked advantagens tef
complexity when compared to equivalent RANS equistia simplification is still warranted perhapsctuse
little (negligible) deviation from the more exacttare of FANS equations.

This simplification is based on the assumption:

* Numerical terms in this table are in the fowh aXb where the symbols mean:

a: how many times the term appears in thegon
b: number of independent scalars definirgtéim, counted in fluctuating primitive variablesT , UI .

7
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pv g =pv qQ, =0
This means that one point double and triple cotigela containing the produghy(’) can be neglected. The fact

that pV" = 0, may be thought to contribute to this end. Thlkea number of correlations in momentu2b)(and
energy 82) equations are further reduced. The whole sefpsoduced below for the sake of completeness:

12 (repeat) _,t+ (P'U_j),j: 0

_ 2_= ——— X "
a4 =i = —[p+§pv9j,i + Z(HEU )vj —PY Uy,

- De - 2—=F —2 (= T 2= =— (7 m

6+21= 27 independent scalars form the correlatappeearing in equatiorg! and35 instead of 18+45= 63
which appear i25and32. No doubt, similar argument can be used for amyetation in 35 providedthat
the simplification is justified with respect to tharticular problem in hand.

It becomes clear that the fundamental equationscéonpressible fluids in Favre averaged form approac
turbulent flow equations of incompressible fluidldtigh with obvious differences), to the extent giatplifica-
tion mentionned above is admitted.

The time independancy of viscosity is generallyepted for momentum and energy equations See KUO
(1986),( though energy equation is in the forn38ft

6: Time correlations between viscosity, density ¢ghabove), temperature, velocity, pressure areudgsed
with the intention whether to keep them in or reménom the set of fundamental equations. Thereforeela-
tions representing interaction between these ditastihave been the subject of intense studidse
phenomenon of interaction was introduced by Profeb& A. Morkovin in the colloque of 1961 organizbyg
Professor A. Favre, at Marseille.

Professor Kowasznay grouped various interactionth wespect to three main quantity or “mode”. The
preference is exhibited as to use instead of viglot@mperature and density, the “more analyticaitpressible
terms” of vorticity, entropy (or total temperatur@nd pressure, Bradshaw P. (1977); (the paperhof &hd
Kowazsnay referred by Bradshaw, dates from 1958Xh8se interactions are discussed around vortiertiro-
py and pressure and the phenomenon is commonlydchtraeintereaction of modes”

The subject is reported in various papers and wajisee: Bradshaw P. (1977), Cebeci T. et al. (1984e S.
K.(1994), Spina, E.F. et al. (1994).

A brief, hence incomplete summary, related mosthyoundary layers, is attempted here within i&m

A: The very first and important observation is thatbulence fluctuations Mach numbigf (i.e. the RMS of
the difference between the instantaneous Mach nuamukits mean value) satisfies:

M <0.15~0.20 if Me<5.00

as stated by Morkovin (1961). Hek&, stands for the Mach number at the edge of the demynlayer. Yet,
Spina (1994) produces tiégure 1, on the basis of more recent measurements, whimlissthat:

M’ <0.3 if M. <5.00 range

The consequence i$'tthee turbulence structure within the boundary layer
is ngpeciably influenced by compressibility of thedtu

8
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Figure 1: Fluctuating Mach Number Distributioflow 1: M, = 2.32, R, = 4700, adiabatic
wall (Elena & Lacharme,1988Flow 2: M. = 2.87, R, = 80000, adiabatic wall (Spina & Smits, 1987);
Flow 3: Me=7.2, R, = 7100, TJ/T.=0.20 (Owen & Horstman, 1972Flow 4: M. = 9.4, R, = 40000,
Tu/Te = 0.40 (Laderman & Demetriades, 1974) . FigurenfroSpina et al. (1994).

It is remarked that the limit of similarity of tuikence structure of compressible mixing layers jetslto the in-
compressible counterparts 4s 1.5, Bradshaw (1977), far smaller than the cooerdmg value 5 valid for

Boundary Layers.
The discussions on turbulent boundary layers of pressible fluids is based on a pair of observatign

Morkovin, Morkovin (1961). Ensuing developments aepetitions of what can be found in Morkovin (1961
Bradshaw (1977), Cebeci (1984):

A: The first observation is that the ratio of fluating local pressure to local mean pressure islsmal
Then,using equation of state, one may write:

0. Hence

o T
1

o o
+

=i
n

o o
I

=

B: The second observation is that, the fluctuatiohsotal temperature'(}) are small, i.e. smaller than the
temperature fluctuationdsigure 2. Then starting with the definition of total tempenz one arrives to its

fluctuations, which reads:

- 1
C,T

—i|-

T'T: T'+iUu' =~ 0. Hence
p

o o

The last relation can be put in a formal form as:
U
= y_l M2=
( ) U

One must note thadl is the local Mach number ant1.=M % .

36

o o
=i

The relatior36 is physically plausible fanigh speedoundary layers if the local Mach numibér< 1 in which
the velocities, hence its fluctuations are smiadl B opposite variability with temperature fluctioas, 36.

9
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Figure 2: Non Dimensionalized RMS Fluctuations of Total Terature, Cebeci (1984).

The ordinate in the original of thiigure from Morkovin (1961, p:379) iqu'TZ :(TTe—Te), and the
numerical scale does not changdorkovin also indicates that the symbols in thiyure are data from
supersonic Boundary Layers with, = 1.77 ( Morkovin-Phinney) ant= 1.72; 3.56; 4.67(all from Kistler).

T, of the Figure isT, .

On the other hand,with heated walls, temperatwstillution is controlled by wall temperature (ma@rectly
by: T,—Te) and not by velocity distribution as was the clsehigh speed flows. Hend®6 is not valid for low
speed flows on heated walls. Meanwhile, the coresecgi of the first observation is still valid. Asecond step
the so called SRA (Strong Reynolds Analogy), imstposed and formulated by Professor Alec D. Young,
Young (1951) is used. (The name SRA was later gbyeRrofessor Morkovin (1961), p:374). This stepres-
ponds to write:

which when combined with the consequence of tts¢ dibservation, yields:

37 P_ T:[Mji

T Ue

So, this relation is good for low speed flowRif~ 1.

7: One may ask how these elaboratioB8, (37) developed with respect to Reynolds averaging fdouient
boundary layers are reflected on Favre averagedtigjtes. We have to start with another principalation in
the same line a&. The following development is mathematically correct

d'=Q-Q:pd'=pQ-pQ ; pd'=pQ-pQ ; pd" = pla-0Q)-

Hence in view of7 one obtains:

38 pa=Q-Q) =pd' —» d'=-2F

A: This result shows that in general the magnitadeims of Favre fluctuations (”) are in theioatf~ = as

o T

compared to Reynolds fluctuations. For doubleaations take the following example:

10
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o )2 2
ouT = plulr= (QJ puT = e—zpu}T'

p

For supersonic boundary layers, one can see thate Fluctuations are one order of magnitude sm#tien the
corresponding Reynolds fluctuations and the doabteelations are two order of magnitude smalleis Bhows
that, in case some correlations are neglectesiptiglect is more justifiable in case of FANS E opures.

B: For non- hypersonic high speed boundary layers,cam start from the relation:

T=-LTu . Then: p'T'=—CiUU poand: pT = —CiUp' u

Cp P P
. , - 11— .
The last relation, witlB8 becomes: T'' = —— Uu'. One may even infer that:
Cp
T = —iUu" , a relation almost the same as the starting one.

p

Such a conclusion means that double correlationstiaa term |pe u'j') appearing in energy equation of the
form 35 can be neglected.

C: An aproximate relation between Favre defined cati@h of order “n” and Reynolds defined correspagdi
one can be found usir&8. The result is:

' n . n+1
39 0GGy i, = (-1 p (&j (%j

The second term in the bracket is one order smtdéar the first one. It can be neglected if needdepending

on the magnitude ofg .

Y
This relation also shows that the magnitude of €alefined correlations decrease quickly as therasti¢he
correlations increase.

P

8: In the hypersonic range, the relat®® — ~ M?, suggests that double correlations cannot be neglestd

the correlation must be individually consideredhwigspect to flow conditions and it is not attendgtere.

9: It is of interest to ask whether fluctuations afoasity and of other material properties of fluafdllow
temperature fluctuations faithfully, and if tematemre fluctuations do also follow velocity flucti@ts instan-
taneously, or are there some phase lags betwese tuantities introducing some sort of amplifaatr
damping effect to fluctuations with natural consemges on correlations?

Perhaps, it may be worthwhile to consider the axtgon of modes from a different angle.

A:Take point wise quantities such as temperatuessure, density, viscosity etc. They are all gtiast
defined at macroscale but are generated in diffesige of volumes from the same or similar agggitof
molecules and atoms, hence at microscale. Thettten between them must be through a propagatioceps,
hence with a delay and phase shift. The delay ltwscillating quantities may lead to damping.

If damping occurs, two consequences are in place:

> Correlations on same quantities (modes) are naetgg to have a damping of this sort, (igpu-u; )

> Correlations of different quantites may be subjédtea damping of this sort, (i@T 6 ). If this is

true, it may explain the negligible magnitude of ttorrelations of different modes for non-hypersoni
boundary layers.
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It appears that provided the boundary layer flommdg hypersonic (i.e;M < 5) self correlation of vortical mode
is enough to be considered in the governing Faguegons of compressible turbulent flow.

B: Lele (1993) begins his review with the sentenopleasizing that “Turbulence is a macroscopic siafeow

in which ..... ". This statement which forms one of fhedestal of turbulence studies is a consequédrmg o
perception of turbulence and cannot be denied. Yet, onedask whether such a perception does not limit the
necesssary (or missing) elements to understanghyyscs of turbulence and restricts our mindsaacgother

time and spatial scales where the root(s) of temee may prevail. Let us continue with another agen

The passage of energy from macroscale re-actitia¢esnolecules. Thus molecules are energized. Ritpgon
their limitations of activity, their saturation lelof absorbtion (of energy), the remainder of¢nergy bounces
back and propagates to macroscale observabletadivi

At microscale some activities are in vibrating stathe re-activation reinfoces these vibrationsrimuthe
propagation, the amplitude of these vibrations ic&rese or damp down depending on the capalufitthe
macrocosmos to assimilate the incoming energy.

Ultimately this sort of bounced back energy maylamped or not at macroscale. If they are not ddirtpey
will likeley cause and maintain turbulence.

The study of such a structure will involve more gibgl (material) elements like molecules, atomgamfree
paths and associated velocities, compaction, aollisnergies, heat formation volumes, density fdiona
volumes, viscosity formation volumes, propagatietocities, instability propagation emanating frdisturbed
molecular activity to enhance macroscale disondéné form of turbulence, etc..... Kinetic theorygafses may
be of help.

C: Finally. one may write the instantaneous velocity of the molecule to aosnmlexity consistent with our
knowledge of the molecular activity, but comprisitiig macroscale velocity and also microsacale onks.
average of the square of this velocity will contaiacroscale energy items as well microscale osigsh(as
those that give rise to heat we measure at magysSome of the terms forming this expression are

correlations between micro scale and macro scate/isies.
One may infer that each of these activities (mamnd macro scales) influence the other, and in lolirhction.

CONCLUSION

1: The use of FANS equations are more accurate angoetoal. This conclusion of the author is not always
shared.

2: The use of energy equation in terms of internalrgy is preferable to its total enthalpy version.

3: This article says that to stick to RANS or FAN§uations will not be sufficient to understand theygics of
turbulence fully; more, to find common roots andifialations to solve turbulent flows. Microcosmosyngive
some clues in this direction.

ACKNOMEDGEMENT AND WHY “AGAIN”"

This paper is in part a summary of author’s leagninocess. Unfortunately he did not see much aBaINS
equations when he was concerned with turbulereragps mostly with incompressible one. So it wagdesire
to attract the attention to FANS equations. Hernsdégarning process began. At the same time he istgloian
abstract to AIAC 2013 on the subject. In due ceuhe observed that some of his conclusions retat€d\NS
equations were already realized by other peopleréfare he withdrew the abstract from AIAC 2013.
There, the author met the objection of Professét. [Tuncer. The author must humbly admit his incetapce
to surmount Professor I. H.Tuncer’s will. So heided to curb at least the boldness of the oriditlel with the
present one.
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