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                                                                       ABSTRACT 
 
Favre Averaging also known as Mass Averaging is another way of time averaging that can be used to obtain 
statistical means of quantities varying randomly in time. Here the emphasis is on a different definition of 
averaged quantity, though  averaging process is again a regular time averaging. This averaging (for brevity Favre  
averaging) applied to instantaneous Navier-Stokes and related governing equations of turbulent flow of com- 
pressible fluids, show a marked advantage on corresponding fundamental equations obtained with Reynolds 
averaging (also regular time averaging  or regular averaging in the sequel). 
This presentation reminds the essentials of Favre averaging and gives the fundamental equations of the mean 
flow under the comprehensive title of FANS EQUATIONS (i.e. Favre Averaged Navier-Stokes) comprising 
equation of continuity, momentum and energy. The basic advantages relative to correponding RANS equations 
are shown and discussed. 
Closure problem cannot be said that it is considered and no CFD solution is given.  
 
CONTENT:  Introduction- Favre averaging principle. Double and triple correlations. 
                     FANS Equations- Continuity; Momentum; Energy 
                     Discussion: Favre averaging against Reynolds averaging. Two energy equations. Consequences. 
                                        Interaction of modes. Can molecular re-activation be related to physics of turbulence?    
                     Conclusion. 
                     Note: Why “again” in the title? 
                      
                                                                         INTRODUCTION 
 
Favre averaging is an averaging on time dependency parameter of randomly varying quantities. The averaging 
process, so called “Favre averaging”, is for turbulent flow quantities of compressible fluids as far as the author of 
this presentation is aware of. Its formal definition  is, Favre (1965): 
 

1                                                                            Qρ  =  Qρ  

 
where “ρ” is the mass density of the compressible fluid, and “Q” is any instantaneous scalar quantity (physical 
properties or components of tensor quantities) of turbulent flow field of this fluid. Single overbar denotes regular 
time averaging and double overbar Favre averaged result. Splitting instantaneous quantities is done as follows:  
 

2                              Q = Q  + q’     and    Q = Q  + q’’          (ρ = ρ  + ρ’   always) 

 
where primed symbols refer to randomly fluctuating part of quantities, respectivly used in regular Reynolds (‘) 
and Favre splitting (“).  It is reminded that statistical averages (time averaging in this case) are deterministic: a 
premise of the turbulent flow. 
The basic form 1 together with splittings of  2 yields: 
 

 3                                  Qρ  = ( ) 






 +ρ+ρ ''' qQ  = Qρ  + Q'ρ  + ''qρ  = Qρ   + ''qρ  
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The group Q'ρ = 0, since with regular averaging 'ρ  = 0. Therefore in view of the basic relation (1), one 

obtains: 

4                                                                             ''qρ  = 0 . 

 
It is remarked that in case of regular time averaging, one finds: 
 

5                             Qρ  = ( )( )'' qQ+ρ+ρ  = Qρ  + 'qρ  + Q'ρ  + '' qρ  = Qρ   + '' qρ  
 

Therefore,  since Qρ  is unique (or from 1): 

 6                                                                 Qρ = Qρ  + '' qρ  = Qρ                             and 
 

7                                                                   '' qρ  =  






 −ρ QQ           

 
It is worthwhile to look at double and triple correlations multiplied by the density. 
Consider two turbulence quantities Q1 and Q2 of a compressible fluid and the time average of their product 
multiplied by the fluid density. The following lines are self explanatory. 
 

          21QQρ  = ( ) 






 +






 +ρ+ρ ''''' 2211 qQqQ  =  ( ) 






 +++ρ+ρ ''''''''' 21122121 qqQqQqQQ .          Hence: 

 

8                                                           21QQρ  = 21QQρ  +  ''''
21qqρ . 

 
For the same quantity RANS averaging yields: 
 

                                            21QQρ  =  '''''''''
2112212121 qqQqQqqqQQ ρ+ρ+ρ+ρ+ρ  

             
Similar process can be used for triple product. 
 

9                       321 QQQρ  = ( )( )( )( )''''''' 332211 qQqQqQ +++ρ+ρ  = 

                                                                                                                                                                                               

                                   =( ) 






 +++++++ρ+ρ ''''''''''''''''''''''''' 321132231321213312321321 qqqQqqQqqQqqQQqQQqQQqQQQ                    

 
which results in: 

 10                       321 QQQρ  =  321 QQQρ + 321 Qqq ''''ρ  + 231 Qqq ''''ρ  + 132 Qqq ''''ρ  + ''''''
321 qqqρ . 

 
At this stage it is observed that relations like 8 and 10 contain much less number of correlations of fluctuating 
parts of turbulence quantities when averaging is in line with 1. 
 
 
                                     FUNDAMENTAL   EQUATIONS FOR TURBULENT FLOWS  
                                                                OF COMPRESSIBLE FLUIDS 
 
Equation of continuity, momentum and energy are considered in turn. 
 
Continuity:  Instantaneous equation of continuity is:                                                               
 
11                                                                        ( ) jjt U ,, ρ+ρ  =  0 
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Uj is  “j” component of instantaneous velocity vector and subscripts  “ ,j” and “ ,t” represent partial derivatives 
with respect to “j  component of position vector x”  and time “t”, respectively. Summation convention is 
observed on repeating indices within a term. 
Splitting  with respect to 2  and averaging considering  4 yields: 
 

12                                                                          t,ρ + ( )jUρ  , j =  0 

 
which is the equation of continuity in FAVRE averaging of a compressible fluid. This equation does not contain 
any term in fluctuating  components of  either the density or the velocity vector. On the other hand, the conven- 
tional splitting and averaging of 11 yields: 
 

13                                                                  t,ρ + jj juU ,''





 ρ+ρ =  0 

 
The advantage is clear.Yet, the instantaneous equation of continuity for fluctuating terms, obtained by taking the 
difference between 11 and 12 is: 
 

14                                                             t,
'ρ  + ( ) jju ,''ρ + ( ) jjU ,'ρ = 0         

 
which is similar to the corresponding equation in terms of Reynolds splitting, i.e: 
 

15                                                                 t,
'ρ  + ( ) jju ,'ρ + ( ) jjU ,'ρ = 0   

 
Momentum equation: Familiar form of instantaneous momentum equation of a compressible fluid with negli- 
 gible weight (per unit volume), written in cartesian frame is: 
 

16                                   
Dt

DUiρ  = jij ,σ  = ( ) jijijp ,τ+δ−  = i3

2
p ,







 µθ+− + ( ) jij2 ,Εµ  

where   

          1:                                                      σij  = ij3

2
p δ







 µθ+− + ijE2µ   

    
                   is the  stress tensor with  “δij “ as the Kronecker delta. The viscous part of the stress tensor is: 

                                                           τij =   σij  – ( )ijpδ−  = ij3

2µθδ− + ijE2µ . 

 
                      Therefore:                                       σij  = – pδij + τij   . 
 

           2:  µ−
3

2
  stands for the special second Lamé constant in view of second Stokes assumption (though  

                  a general “λ” could have been used), 
 
          3:    θ = Uj,j  stands for dilatation, i.e: time rate of relative volumetric deformation, 

          4:     Eij   is the rate of strain tensor, i.e: Eij = ( )ijji UU
2

1
,, + . 

         5:     “
Dt

DUiρ ” is the inertia force per unit volume and  can be expressed with the help of the equation of 

               continuity as:                         
Dt

DUiρ = ( ) ( ) jjiti UUU ,, ρ+ρ . 

 
The left hand side of 16 can be Favre averaged  and when 1 and 8  are applied the result is: 
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 In fact, this expansion is valid for any transferable property “Q”, i.e:   
Dt

DQρ = ( ) ( ) jjt QUQ ,, ρ+ρ . 

 

17                                                   
Dt

DUiρ =  ( ) tiU ,ρ  + jjiji uuUU ,''''





 ρ+ρ  

 
which, considering 11 becomes: 

18                                                              
Dt

DUiρ =  
Dt

UD iρ  + jji uu ,''''ρ    . 

 
Right hand side of 16 is reconstructed with the following premises. 
 
        1: presure is replaced by temperature with the help of the equation of state: 
 
                             p = ρ R T  in which “R” is the gas constant  and “ T ” is the temperature. Hence: 
 

19                                                            p= TRρ  .       and      ''Tρ = 0 

 
        2: coefficient of dynamic viscosity is taken into account as: 
 

20                                                        µ = ρν    with    µ  = νρ    and   ''ρν = 0 . 

 
Then, the right hand side of 16 reads in the first place as: 
 

21                              i3

2
p ,







 µθ+− + ( ) jij2 ,Εµ  = i3

2
TR ,







 ρνθ+ρ− + ( ) jijE2 ,ρν  

 
and its  averaged  form becomes:        
 

22           ( ) iiji E2
3
2

p ,, µ+






 µθ+−   =  i3
2

3
2

TR ,''''







 θρν+θνρ+ρ−  + ( ) jijij EE2 ,''''ρν+νρ  

 

Therefore the Favre  averaged momentum equation can be written as:  

23                     
Dt

UD iρ  + jji uu ,''''ρ = i3

2

3

2
TR ,'''' 







 θρν+θνρ+ρ−  + jijij EE2 ,''''







 ρν+νρ  

 
or : 

24              
Dt

UD iρ  = i3

2
TR ,







 θνρ+ρ−  + ( ) jijE2 ,νρ  – jji uu ,''''ρ i3

2
,'''' 






 θρν−  + jijE2 ,''''





ρν  

or : 

25                    
Dt

UD iρ = i3

2
p ,







 θνρ+−  + ( ) jijE2 ,µ  – jji uu ,''''ρ i3

2
,'''' 






 θρν−  + jijE2 ,''''





ρν  

 
Energy equation: The instantaneous differential equation of energy, without any direct heat added or taken out 
during the process, may be expresed in two different forms: 
     
A: Direct application of the first law of thermodynamics leads to: 
 

26                                                        













+ρ

2

U
e

Dt

D
2
j  =  ( ) ( ) jjjiij kTU ,,, +σ  
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B: The latter equation can be organized to have on the left hand side the substantial derivative of total enthalpy. 
One ends with the familar form of the energy equation:  
 

27                                                          
dt

DhTρ  = tp,  + ( ) jiij U ,τ  + ( )jkT, , j       

                   where: 

                   total enthalpy                 hT =  e + 
2

Up
2
j+

ρ
= h 

2

U2
j+ = TCP 2

U2
j+    

                 
with “h” as the static enthalpy, “e” internal energy (both per unit mass) and “ CP “ as the specific heat of the gas 
at constant pressure.   
  
Each of these two energy equations (i.e: 26 and 27) is treated  below. 
 
A:  26  can be reduced to a more managable form: 
  

since:                  













+ρ

2

U
e

Dt

D 2
i  = 

Dt

Deρ  + 













ρ

2

U

Dt

D 2
i  ; then:    

Dt

Deρ  + 
Dt

DU
U i

iρ  = ( ) ( ) jjjiij kTU ,,, +σ  

 
With the help of 16, and decomposition of the terms following the third equality sign, one obtains:  
 

                                                       
Dt

Deρ  + ijij U,σ = jiijijij UU ,, σ+σ  + ( ) iikT ,,  

The ultimate result is: 

28                                           
Dt

Deρ  = jiij U ,σ  + ( ) iikT ,,  = +θ−p jiij U ,τ  + ( ) iikT ,,  

 
Right hand side of the first equality sign is expanded as: 
 

           ( ) jjjiij kTU ,,, +σ  = jiijij UE2
3

2
p ,








µ+δ







 µθ+− + ( ) iikT ,, =  θ






 µθ+−
3

2
p + ijji EU2 ,µ + ( ) iikT ,,  

 
But the part of the viscous dissipation term containing rate of strain can further be simplified as: 
 

                                                                    ijji EU ,  = ( ) ijijij EE ω+  = 2
ijE      

 

since   ijij Eω = 0 ,  where  “ ijω ” is the unsymmetrical part of the velocity gradient tensor  “ jiU , ”. Hence  

 
the energy equation in the form of 26 becomes: 
 

29                                      
Dt

Deρ  =  θ






 µθ+−
3

2
p + 2

ijE2µ + ( ) iikT ,, = θ−p + ( ) iikT ,, + Φ 

Here                                                   Φ = 2

3

2µθ− + 2
ijE2µ = 







 −θµ− 2
ij

2 E2
3

2
 

is the viscous dissipation term.  
 
The splitting of 26 according to Favre and averaging yields: 
 

30                            
Dt

Deρ = ( ) te ,ρ + ( ) jjeU ,ρ  =  ( ) te ,ρ  + jjj ueUe ,''''





 ρ+ρ  = +ρ

Dt

eD
 ( ) jjue ,''''ρ  
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for the left hand side. The option of replacing “e” in terms of  “T”, i.e:  e = CV T  and   e’’= CV T’’ , can be done 
directly; since such a change will not alter the equation and will not  provide additional  correlation term(s) if CV 

is taken as a constant. 

The instantaneous right hand side is :    θ






 µθ+−
3

2
p + 2

ijE2µ + ( ) iikT ,,  

 
In the following treatment, 19 and 20  are observed; hence the average of the right hand side of  29 becomes:  
 

31                          ( ) jj
2
ij kTE2

3

2
p ,,+ρν+θ







 ρνθ+−  =  θρ






 θν+−
3

2
TR  + 

2

ijE2 νρ + ( ) jjTk ,,  – 

                                         '''' θρ− TR '''' θρνθ−
3

4 2

3

2 ''ρθν−    2

3

2 '''' θρν−  + 






 ρν+ρν+ρν 2
ijijij

2
ij EEE2E2 ''

'
''''''''   

 
Therefore Favre averaged form of the Energy equation is: 
 

32                        
Dt

eDρ  = θ






 θµ+−
3

2
p +

2

ijE2µ + ( ) jjTk ,,
'''' θρ− TR '''' θρνθ−

3

4
 2

3

2 ''ρθν− +   

                                                       + 






 ρν+ρν ''''''
ijij

2
ij EE2E2  2

3

2 '''' θρν− + 




ρν 2

ijE2 ''
'

''  – jjue ,''''





ρ  

 
B. The alternative energy equation 27 may also be treated in  a similar way. 
 

27 (repeat)                                             
dt

DhTρ  = tp,  + ( ) jiij U ,τ  + ( ) jjkT ,,    

Left hand side is:        

                                 
dt

DhTρ  = 













+ρ

2

U
h

Dt

D 2
i = 

Dt

Dhρ  + 
Dt

DU
U i

iρ = 
Dt
Dhρ  + jijiU ,σ  

and 

                                                   
Dt

Dhρ  + jijiU ,σ  = 
Dt

Dhρ ii pU ,− + jijiU ,τ    

expanding the right hand side : 
 

                     
Dt

Dhρ ii pU ,− + jijiU ,τ = tp, + ( ) jiij U ,τ + ( ) jjkT ,, = tp, + jijiU ,τ jiij U ,τ+ + ( ) jjkT ,,  

yields  27  as: 

33                                                          
Dt

Dhρ  =  
Dt

Dp
 jiij U ,τ+ + ( ) jjkT ,,  

 
The last equation will not be considered for further development as explained below (item 2 of Disccussion). 
 
 
                                                                         SOME DISCUSSION 
 
1:  The set of equations composed of continuity, momentum and energy are referred as fundamental equations to     
     distinguish them from governing equations of turbulent flows comprising closure formulations and other 
     auxilliary relations in addition  to fundamental equations. 
  
2:  Equation 33 does not express any advantage compared to 29.  Contrary, both sides of  33 contain  
     total derivative of pressure in some form, which is a repetition from physical point of view,  therefore 
     an unnecessary burden for calculations. Hence,  33 is not carried further. 
.  
    On the other hand, arguments related to 29 forwarded in the sequel, could have been repeated for 33,  
   (if  for some reason there is interest).  
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3:  FAVRE averaging leading to FANS equations composed of  12, 25, 32 are fundamental equations for  
     the study of linear Stokes fluids. During the derivation of these equations, Stokes second assumption  
     leading to the definition of second Lamé constant  “λ”, i.e. the compressibility constant in terms of   
     dynamic viscosity,  is used . This is done just to help an easy comparison with RANS or NS equations  
     developed commonly with the same premise for incompressible fluids.  
     Similar argument is used when perfect gas relation is introduced to relate pressure to temperature via mass 
     density. If the study warrants, these simplifications can be replaced by more accurate and suitable relations.  
     In the same spirit, calorically perfect gas assumption will be used  when discussing further simplifications    
     of fundamental equations.   
     It is to be noted that these considerations do not hamper the advantage of FAVRE averaging procedures. 
 
4:  The reduction in the number of correlations is surely the advantage of FAVRE averaging.This can be  
     seen by comparing the number of scalars defining tensors quantities in RANS and FANS equations due  
    to fluctuations. 
                                                                                TABLE 
 
                                    Number of independent scalars* appearing in correlations for 3D flows  
 
       EQUATION(s)                               RANS                                               FANS 
 
      Continuity (12)                              1X3 =3                                                  – 
 
      Momentum (25)                  1X15+1X10+27= 52                         1X6+1X3+1X6 = 15 
 
      Energy (32)                      1X4X3+1X4X3+1X15+                    1X3+1X3+1X13+1X12+ 
                                           +1X15+1x6+1X15+1X15= 90          +1X6+1X3+1X12+1X3 = 45 
 
Another avenue of comparison is possible. 
 
A: The Favre averaged form of the equation of continuity admits a correct (i.e: physically consistent) definition 
of streamline without any flow across the streamline. On the other hand , Reynolds averaging of the same 
equation contains  the additional term of: 

                                                                      iiu ,' 'ρ   

                                                                                      which does not confirm  the definition of streamline based 
 on mean velocity resulting from Reynolds averaging, Lele (1994). 
 

B: The associated term '' iuρ  appers as a source term: this point wise source term becomes positive or negative 

depending on the flow conditions. A source term of mass  may indicate that the mathematics does not represent 
the physics adequately, Spina et al.(1994).  
    
Further discussion of relative merits or disadvantages of FAVRE averaging vs. Reynolds averaging can be found 
in Lele (1993). 
 
C: The number of correlations that for one or other reason is omitted from the equations is less in Favre 
averaging. Then, it is possible to say that mass averaging reflects the physics of turbulent behaviour adequately.   
. 
5: The fundamental equations derived so far, i.e: 12, 25 and 32, are exact to the extent that the instantaneous 
equation are exact. In spite of the fact that FANS fundamental equations have a marked advantage in terms of 
complexity when compared to equivalent RANS equations, a simplification is still warranted perhaps to cause 
little (negligible) deviation from the more exact nature of FANS equations. 
This simplification is based on the assumption: 
 
*  Numerical terms  in this table are in the form  of   aXb  where the symbols mean:   
 
       a:  how many times the term appears in the equation 

       b: number of independent scalars defining the term,  counted in fluctuating primitive variables: ρ, T’’ , ''
iU . 
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                                                                         '''' qρν  = ''''''
21qqρν  = 0  

 
This means that one point double and triple correlations containing the product (ρν’’) can be neglected. The fact 

that ''ρν = 0, may be thought to contribute to this end. Then, the number of correlations  in momentum (25) and 

energy (32)  equations are further reduced. The whole set is reproduced below for the sake of completeness:    
 

12 (repeat)                                                                 t,ρ + ( ) jjU ,ρ =  0 

 

34                                                      
Dt

UD iρ = i3

2
p ,







 θνρ+−  + ( ) jijE2 ,µ  – jji uu ,''''ρ   

                                                                                                                                                                                                                                             

35        
Dt

eDρ = θ






 θµ+−
3

2
p +

2

ijE2µ + ( ) jjTk ,,
'''' θρ− TR 2

3

2 ''ρθν− + 




 ρν 2

ijE2 ''  –( ) jjue ,''''ρ  

 
6+21= 27 independent scalars form the correlations appearing in equations 34 and 35 instead of 18+45= 63  
which appear in 25 and 32. No doubt, similar argument can be used for any correlation in  35 provided that 
the simplification is justified with respect to the particular problem in hand.   
 
It becomes clear that the fundamental equations for compressible fluids in Favre averaged form approach 
turbulent flow equations of incompressible fluid (though with obvious differences), to the extent that simplifica- 
tion mentionned above is admitted.  
                                
The time independancy of viscosity is generally accepted for momentum and energy equations See KUO 
(1986),( though energy equation is in the form of 33).  
 
6:  Time correlations  between viscosity, density (shown above), temperature, velocity, pressure are discussed 
with the intention whether to keep them in or remove from the set of fundamental equations. Therefore correla- 
tions representing interaction between these quantitites have been the subject of intense studies. The 
phenomenon of interaction was introduced by Professor M. A. Morkovin in the colloque of 1961 organized by 
Professor A. Favre, at Marseille.  
Professor Kowasznay grouped various interactions with respect to three main quantity or “mode”. The 
preference is exhibited as to use instead of velocity, temperature and density, the “more analytically expressible 
terms” of  vorticity, entropy (or total temperature) and pressure, Bradshaw P. (1977); (the paper of Chu and 
Kowazsnay referred by Bradshaw, dates from 1958). So these interactions are discussed around vorticity, entro- 
py and pressure and the phenomenon is commonly named the “intereaction of modes”  
The subject is reported in various papers and reviews, see: Bradshaw P. (1977), Cebeci T. et al. (1984), Lele S. 
K.(1994), Spina, E.F. et al. (1994). 
  
A brief, hence incomplete summary, related mostly to boundary layers, is attempted here within item 6. 
 
A:  The very first and important observation is that: turbulence fluctuations Mach number M’  (i.e. the RMS of 
the dıfference between the instantaneous Mach number and its mean value) satisfies: 
 
                                                                   M’  < 0.15 ~ 0.20      if            M e < 5.00   
 
as stated by Morkovin (1961). Here M e stands for the Mach number at the edge of the boundary layer. Yet, 
Spina (1994) produces the Figure 1, on the basis of more recent measurements, which shows that:   
 
                                                                 M’ < 0.3                   if            M e < 5.00  range 
            
 
                             The consequence is that ” the turbulence structure within the boundary layer  
                                           is not appreciably influenced by compressibility of the fluid”.  
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                 Figure 1: Fluctuating Mach Number Distribution. Flow 1: Me = 2.32, Re = 4700, adiabatic 
wall (Elena & Lacharme,1988); Flow 2: Me = 2.87, Re = 80000, adiabatic wall (Spina & Smits, 1987); 
Flow 3: Me = 7.2, Re = 7100,  Tw/Te = 0.20 (Owen & Horstman, 1972); Flow 4: Me = 9.4, Re = 40000, 
Tw/Te = 0.40 (Laderman & Demetriades, 1974) . Figure from : Spina et al. (1994). 
 
It is remarked that the limit of similarity of turbulence structure of compressible mixing layers and jets to the in- 
compressible counterparts is ≈ 1.5, Bradshaw (1977), far smaller than the corresponding value 5 valid for 
Boundary Layers.    
The discussions on turbulent boundary layers of compressible fluids is based on a pair of observation by 
Morkovin, Morkovin (1961). Ensuing developments are repetitions of what can be found in Morkovin (1961), 
Bradshaw (1977), Cebeci (1984):  
 
   A: The first observation is that the ratio of fluctuating local pressure to local mean pressure is small. 
Then,using equation of state, one may write: 
 

                                                       
p

p'
= 

T

T'' +
ρ
ρ

≈ 0 .      Hence       
T

T'' −=
ρ
ρ

 

 

  B: The second observation is that, the fluctuations of total temperature ( '
TT ) are small, i.e. smaller than the 

temperature fluctuations, Figure 2. Then starting with the definition of total temperature one arrives to its 
fluctuations, which reads: 

                                               'TT =  '' uU
C

1
T

p

+  ≈  0 .     Hence       
T

T'' −=
ρ
ρ

= 'uU
TC

1

p

 

 
The last relation can be put in a formal form as: 
 

36                                                              
T

T'' −=
ρ
ρ

 =  ( )1−γ  M 2

U

u'
  

One must note that M is the local Mach number and   M e = M
U

Ue  . 

The relation 36 is physically plausible for high speed boundary layers if the local Mach number M  < 1 in which 
the velocities, hence its  fluctuations are small and in opposite variability with temperature fluctuations, 36. 
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                     Figure 2: Non Dimensionalized RMS Fluctuations  of Total Temperature, Cebeci (1984). 

  The ordinate in the original of this Figure from Morkovin (1961, p:379) is:
2

TT ' : ( )eTe TT − , and the 

numerical scale does not change. Morkovin also indicates that the symbols in the Figure are data from 
supersonic Boundary Layers with Me  = 1.77 ( Morkovin-Phinney) and Me= 1.72; 3.56; 4.67(all from Kistler).  

'
0T  of the Figure  is '

TT . 

 
On the other hand,with heated walls, temperature distribution is controlled by wall temperature (more correctly 
by: Tw–Te) and not by velocity distribution as was the case for high speed flows. Hence 36 is not valid for low 
speed flows on heated walls. Meanwhile, the consequence of the first observation is still valid. As a second step  
the so called SRA (Strong Reynolds Analogy), first proposed and formulated by Professor Alec D. Young, 
Young (1951) is used. (The name SRA was later given by Professor Morkovin (1961), p:374). This step corres- 
ponds to write: 
 

                                                                          
ew TT

T

−
'

 = 
eU

u'
 

 

which when  combined with the consequence of the first observation, yields: 
 

37                                                             
T

T'' −=
ρ
ρ

= 






 −
T

TT ew

eU

u'
 

 
So , this relation is good for low speed flows, if Pr  ≈ 1. 
 
 
7: One may ask how these elaborations (36, 37) developed with respect to Reynolds averaging for turbulent 
boundary layers are reflected on Favre averaged quantitites. We have to start with another principal relation in 
the same line as 7. The following development is mathematically correct: 
 

                         ''q  = QQ−  ; ''qρ = QQ ρ−ρ  ;  ''qρ = QQ ρ−ρ  ;  ''qρ = ( )QQ −ρ .  
 
Hence in view of 7 one obtains: 

38                                     '' qρ = 






 −ρ QQ   = – ''qρ                      ''q  = 
ρ

ρ− '' q
 

A:  This result shows that in general  the magnitude in terms of Favre fluctuations  (‘’) are  in the ratio of ≈ 
ρ
ρ'

as 

compared to Reynolds fluctuations.  For double correlations take the following example: 
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                                               '''' Tuiρ  ≈  '' ''
Tu

ρ
ρ

ρ
ρρ =  '''

Tui

2

ρ










ρ
ρ

 ≈  '''
Tui2

2

ρ
ρ

ρ
 

 
For supersonic boundary layers, one can see that  Favre fluctuations are one order of magnitude smaller than the 
corresponding Reynolds fluctuations and the double correlations are two order of magnitude smaller. This shows 
that, in case  some correlations are neglected, this neglect is more justifiable in case of FANS Equations. 
 
B: For non- hypersonic high speed boundary layers, one can start from the relation: 
 

                              'T = 'uU
C

1

p

−  . Then :    '' Tρ = '' ρ− uU
C

1

p

  and :   '' Tρ = '' uU
C

1

p

ρ−  

The last relation, with 38 becomes:    ''T  =  ''uU
C

1

p

− . One may even infer that:  

                                       ''T  ≈ ''uU
C

1

p

−  , a relation almost the same as the starting one. 

Such a conclusion means that double correlations and the term ( )''''
jueρ  appearing in energy equation of the 

form 35 can be neglected.  
 
C: An aproximate relation between Favre defined correlation of order “n” and Reynolds defined corresponding 
one can be found using 38. The result is: 
 

39                                       '''''' ....... n21 qqqρ  ≈ ( )n1− ρ ''' ....... n21 qqq























ρ
ρ+









ρ
ρ

+1nn
''

 

 
The second term in the bracket is one order smaller than the first one. It can be neglected if need be, depending 

on the magnitude of  
ρ
ρ'

. 

This relation also shows that the magnitude of Favre defined correlations decrease quickly as the order of the 
correlations increase. 

8: In the hypersonic range, the relation 36   
ρ
ρ'

 ~  M 2 , suggests that double correlations cannot be neglected and 

the correlation must be individually considered with respect to flow conditions and it is not attempted here. 
 
9: It is of interest to ask whether fluctuations of viscosity and of other material properties of fluid do follow  
temperature fluctuations faithfully, and  if temperature fluctuations do also follow velocity fluctuations instan- 
taneously, or are there some  phase lags between these quantities introducing some sort of amplification or 
damping effect to fluctuations with natural consequences on  correlations? 
 
Perhaps, it may be worthwhile to consider the interaction of modes from a different angle. 
 
A:Take point wise quantities such as temperature, pressure, density,  viscosity etc. They are all quantities  
defined at macroscale  but are generated in different size of volumes from the same or similar activities of 
molecules and atoms, hence at microscale. The interaction between them must be through a propagation process, 
hence with a delay and phase shift. The delay between oscillating quantities may lead to damping. 
If  damping occurs, two consequences are in place: 
 

� Correlations on same quantities (modes) are not expected to have a damping of this sort, (ie:  – ''''
ji uuρ ) 

� Correlations of different quantites may be subjected to a damping of this sort,  (ie: '''' θρT ).  If this is 

true, it may explain the negligible magnitude of the correlations of different modes for non-hypersonic 
boundary layers. 
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It appears that provided the boundary layer flow is not hypersonic (i.e:  M < 5) self correlation of vortical mode 
is enough to be considered in the governing Favre equations of compressible turbulent flow.  
 
B: Lele (1993) begins his review with the sentence emphasizing that “Turbulence is a macroscopic state of flow 
in which …..”. This statement which forms one of the pedestal of turbulence studies is a consequence of our 
perception of turbulence and cannot be denied. Yet,  one has to ask whether such a perception does not limit the 
necesssary (or missing) elements to understand the physics of turbulence  and restricts our minds to go to other 
time and spatial scales where the root(s) of turbulence may prevail. Let us continue with another scenario. 
 
The passage of energy from macroscale re-activates the  molecules. Thus molecules are energized. Depending on 
their limitations of activity, their saturation level of absorbtion (of energy), the remainder of the energy bounces 
back and propagates to macroscale observable activities.       
 
At microscale some activities are in vibrating state. The re-activation reinfoces these vibrations. During the 
propagation,  the amplitude of these vibrations  can increse or damp down depending on the capability of the 
macrocosmos to assimilate the incoming energy. 
Ultimately  this sort of bounced back energy may be damped or not at macroscale. If they are not damped, they 
will likeley cause and maintain turbulence. 
 
The study of such a structure will involve more physical (material) elements like molecules, atoms,  mean free 
paths and associated velocities, compaction, collision energies, heat formation volumes, density formation 
volumes,  viscosity formation volumes, propagation velocities, instability propagation emanating from disturbed 
molecular activity to enhance macroscale disorder in the form of turbulence, etc….. Kinetic theory of gases may 
be of help. 
 
C: Finally. one may write the instantaneous velocity of the molecule to any complexity consistent with our 
knowledge of the molecular activity, but comprising the macroscale velocity and also microsacale ones. The 
average of the square of this  velocity will contain macroscale energy items as well microscale ones (such as 
those that give rise to  heat we measure at macroscale). Some of the terms forming this expression are: 
 
                                            correlations between micro scale and macro scale activities. 
   One may infer that each of these activities (micro and macro scales) influence the other, and in both direction.  
 
 
 
                                                                      CONCLUSION  
 
1: The use of FANS equations are more accurate and economical.This conclusion of the author is not always 
shared. 
 
2: The use of energy equation in terms of internal energy is preferable to its total enthalpy version. 
 
3: This article says that to stick to RANS or FANS equations will not be sufficient to understand the physics of 
turbulence fully; more, to find common roots and formulations to solve turbulent flows. Microcosmos may give 
some clues in this direction.  
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