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ABSTRACT 

In this paper, finite-difference based Lattice Boltzmann Method (LBM) is implemented to perform fluid 
flow analysis on uniform grids. With the approach followed, the known limitation of the LBM on 
Courant-Friedrichs-Lewy (CFL) number being equal to one is eased and convergence to steady-state 
solution is accelerated. 2D lid-driven cavity problem is selected as a benchmark and solved on grids of 
various resolutions at low Reynolds number conditions.The results are compared against the results 
from the literature. Very close agreement is obtained regarding the velocity profiles along the vertical 
and horizontal centerlines of the square cavity. The convergence rates are compared for different CFL 
numbers. The improvement of the convergence rate is significant and presented in this manuscript.  
 

INTRODUCTION 

The LBM is a fairly new numerical method, which is originated from the Lattice-Gas Automata (LGA) 
method. The LGA method simulates the behavior and interaction of gas particles in a simple way, thus 
can be considered as a type of Molecular Dynamics method. In this method, the gas is modeled as a 

cluster of solid spheres moving along a uniform lattice [Chopard, B. and Droz, M. 2005]. 

Each solid sphere has a discrete set of possible velocities and the collision between separate particles 
is handled by a set of elastic collision rules. Macroscopic quantities, such as particle density and 
velocity at each lattice node, can be computed using the microscopic quantities, making it possible to 
study the macroscopic behavior of a fluid flow. Even though the method is based on a simple 
molecular dynamics model unlike the continuum assumption that the Navier-Stokes equations are 
derived, it still shows the same physical behavior. Beyond this, it has several advantages over the 
conventional Computational Fluid Dynamics (CFD) methods such as low memory requirement and 
high parallelization capability. However, numerically, the LGA method suffers the statistical noise 
caused by the averaging procedure to obtain the macroscopic properties from the microscopic 
properties. 

To remedy the statistical noise that the LGA method suffers, the Lattice Boltzmann Method (LBM) was 
developed. As being a derivate of the LGA method, the LBM basically relies on the same idea. 
However, instead of handling single particles, the LBM handles particle distributions. This removes the 
need for averaging to obtain the macroscopic properties from the microscopic properties, so the 
statistical noise is also removed. Still, it retains the same advantages as LGA method  

[Nourgaliev, R.R. et al 2003]. This makes the LBM an attractive method, and there is an 

increasing interest in the LBM in the CFD community. This provides a rapid progress towards 
development and employment of the LBM. Even, there are various LBM based commercial flow 

solvers available on the market, like PowerFLOW [Yu, D.Z., Mei, R.W., and Shyy, W. 

2002] developed by Exa Corporation and XFlow  [Botella, O. and Peyret, R. 1998] 
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developed by Next Limit Technology. However, the method has restrictions such as the uniformity of 
the computational grid to be used and the unit CFL number, which the LBM inherited from the LGA 
method. These shortcomings are to be the major handicap on widespread use of LBM in engineering 
problems. Therefore, a lot of research is going on to improve these aspects of LBM. 

In this paper, LBM is implemented using the finite difference approach. Following this way, the known 
limitation of the LBM on CFL number being equal to one is eased and convergence to steady-state 
solution is accelerated. A generic viscous flow problem, 2D lid-driven cavity, is solved on grids of 
various resolutions at low Reynolds number conditions and the results are compared against the 
results from the literature. The convergence rates are also compared for different CFL numbers.  

 

NUMERICAL METHOD 

In the LBM, one solves the kinetic equation of particle distribution function. A kinetic model widely 

used in the literature is Bhatnagar-Gross-Krook (BGK) model [Bhatnagar, P.L., Gross, 

E.P., and Krook, M. 1954], which has the following form; 

01
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where  is the particle distribution function, in which  is the position vector,  is the particle 

velocity vector, t is the time,  is the Maxwell- Boltzmann distribution function, and  is the relaxation 
time.  To solve  numerically, Equation (1) is discretized in the velocity space using a set of velocities, 

 [He, X.Y. and Luo, L.S. 1997]; 
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In the above equation,  is the distribution function associated with the 
th
 discrete velocity, . For 

2D problems, one might use D2Q9 model  [He, X.Y. and Luo, L.S. 1997] of which the 

discrete velocities are shown in Figure 1 below; 

 

Figure 1 Discrete velocities of D2Q9 model. 

 

The discrete velocities of D2Q9 model are presented by: 
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where is the lattice velocity. The macroscopic properties can be calculated using the particle 
distribution functions using: 
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The equilibrium function [Kandhai, D. et al 2000] for each direction can be written as follows: 
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The convection term in Equation (2) might be discretized using any central or upwind schemes. The 
central scheme is less dissipative compared to upwind schemes, but it is known to produce unphysical 
wiggles in the solution field. To remedy this, a mix of central and upwind schemes is used for the 
present study and 2

nd
 order accuracy is obtained in spatial discretization. The time integration of 

Equation (2) is done using 2
nd

 order Implicit-Explicit Runge Kutta time discretization scheme 

[Pareschi, L. and Russo, G. 2005]. The implementation of boundary conditions is done 

using the extrapolation method giving in [Guo, Z.L., Zheng, C.G., and Shi, B.C. 2002].  

 

RESULTS 

2-D lid-driven cavity problem for Reynolds number of 100, 400, and 1000 are solved on different 

resolutions of grids and the results are compared with the data from the literature  [Ghia, U., 

Ghia, K.N., and Shin, C.T. 1982] to show the validity of the current method. The solutions 

are obtained on uniform Cartesian meshes.  

The calculated streamlines for the 128x128 grid and Reynolds numbers of 100, 400, and 1000 are 
shown in Figure 2, Figure 3 and Figure 4 respectively. 

 

 
Figure 2 Computed streamlines inside the cavity for Re = 100. 
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Figure 3 Computed streamlines inside the cavity for Re = 400. 

 

 
Figure 4 Computed streamlines inside the cavity for Re= 1000. 

 

Comparisons of the velocity profiles along the vertical and horizontal centerlines of the square cavity 
for different grid resolutions and Reynolds numbers of 100, 400, and 1000 are shown in Figure 5, 
Figure 6 and Figure 7, respectively. 
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Figure 5 Comparison of velocity components in x and y directions, respectively, with the results from 

[Ghia, U., Ghia, K.N., and Shin, C.T. 1982], for Re = 100. 

 

 

 
Figure 6 Comparison of velocity components in x and y directions, respectively, with the results from  

[Ghia, U., Ghia, K.N., and Shin, C.T. 1982], for Re = 400. 
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Figure 7 Comparison of velocity components in x and y directions, respectively, with the results from  

[Ghia, U., Ghia, K.N., and Shin, C.T. 1982], for Re=1000. 
 

The convergence history of different CFL numbers for 64x64 grid is given in Figure 8 

Figure 8 Comparison of convergence history for different CFL numbers at Re=400 
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