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CFD Simulations based on the in-house PUMA code

Compressible flow simulations are based on the fully-parallelized and GPU-enabled 
i h PUMA d I ibl fl i l d i i h h i
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in-house PUMA code. Incompressible flows are simulated using either the inco-
PUMA code or OpenFOAM. Supported by grid generation methods/software.



EASY: The Evolutionary Algorithms SYstem

A generic-purpose optimization platform which 

accommodates any evaluation tool (CFD, CSM, CEM, etc), 

runs on any parallel system, 

solves single- and multi-objective optimization problems (SOO & MOO),

solves constrained or unconstrained problems andsolves constrained or unconstrained problems and

is suitable for computationally expensive problems. 
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Adjoint Methods: What do they can for you?

Objective Function (min.):

Requested:
given

Constraint:

Flow Equations = 0q

Optimization Method:

Steepest DescentSteepest Descent,

Quasi Newton,

Newton,…
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Direct Differentiation (DD) Approach (instead of …)

Discrete DD:

Continuous DD:

… plus the same for the state boundary conditions.
Wh DD?

p y
Why DD? 
►Validate the adjoint-based sensitivities (easily programmable, expensive).

Inverse Design of  a 2D g
Compressor Cascade

(Continuous Adjoint)
Comparison of  grad(F) from: 
AV=adjoint (variable) method
DD=direct-differentiation
FD=finite-differences
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►DD is an indispensable component of  methods computing higher-order derivatives. 



Adjoint Methods: Discrete or Continuous Approach?

Discrete Adjoint:

First-discretize, then-differentiate

C i Adj iContinuous Adjoint:

First-differentiate, then-discretize

Hybrid Adjoint:

“half” discrete, “half” adjoint

The Think-Discrete-Do-Continuous ApproachThe Think Discrete Do Continuous Approach

Continuous adjoint where the adjoint PDEs are discretized in a
way that reproduces the result of discrete adjoint.
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Introduction - Outline

Development of both continuous and discrete adjoint methods.

Activities related to the development of  Adjoint Methods

For compressible fluids (in-house, primitive variable solver, GPU-enabled).

For incompressible fluids (OpenFOAM or in-house code. Pseudo-compressibility,
GPU-enabled).

For steady & unsteady flows (check-pointing, storage of approximates).

For shape, flow-control, robust-design and topology optimization problems.

Internal (turbomachinery) & external aerodynamics (cars wings)Internal (turbomachinery) & external aerodynamics (cars, wings).

Emphasis to continuous adjoint method for turbulence models.

Calculation of high-order sensitivities, using both continuous & discrete adjoint.
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Continuous Adjoint Methods for Turbulent Flows

St t E ti

The commonly used approach - The “frozen turbulence assumption”
Demonstrated for incompressible flows, exists & runs also for compressible flows

• State Equations

(plus the turbulence model eqs.)

• Development of  the Adjoint Equations & Boundary Conditions
For any objective function F:

Differentiate Faug w.r.t. to bm, where bm are the N design variables…

• Adjoint Equationsj q
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and the adjoint boundary conditions…



Development of the Continuous Adjoint Method

Sensitivity Derivatives including only Boundary Integrals
Even if  the objective function includes Field Integrals

•Sensitivity Derivatives

Advantages!

D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘A Continuous Adjoint Method with Objective Function 
Derivatives Based on Boundary Integrals for Inviscid and Viscous Flows’, Computers & Fluids, Vol. 36, 
pp. 325-341, 2007.

D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Total Pressure Losses Minimization in Turbomachinery

K.  GIANNAKOGLOU,    NTUA 9

y
Cascades, Using a New Continuous Adjoint Formulation’, Proc. IMechE, Part A: Journal of  Power and 
Energy (Special Issue on Turbomachinery), Vol. 221, pp. 865-872, 2007.



Objective Functions (F)

Types of  F often used in Turbomachinery Applications
Apart from Lift/Drag etc used in External Aerodynamics

2
arg
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• Inverse design.
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♦
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• Losses Minimization.
• Functional and design variables correspond to different boundaries !!!
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• Losses Minimization.
•Transformation of  the inlet/outlet integral to a field integral !!!



Validation - Design of a 2D Compressor Cascade

Computation of  Sensitivity Derivatives on the starting airfoil
Laminar Flow, Subsonic Flow, stagger angle & solidity are fixed

- Without running the Optimization Loop -g p p

n t n tF V p dS V p dSρ ρ= −∫ ∫
in outS S
∫ ∫

Adjoint Pressure
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Adjoint to the Spalart-Allmaras (SA) Turbulence Model

Exact Differentiation of  the Turbulence Model Eqs.
Demonstrated for incompressible flows, exists & runs also for compressible flows

Demonstrated for the Spalart-Allmaras model. Exists for k-ε & k-ω SSTp

p pr r q Adj int pr rp pressure q Adjoint pressure

vi velocities ui Adjoint velocities

turbulence variable Adjoint turbulence variable
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Adjoint to the Spalart-Allmaras (SA) Turbulence Model

How Important is to Differentiate the Turbulence Model Eqs.?
Depending on the case & the Reynolds number, the “frozen turbulence assumption” 

may lead to wrongly signed sensitivity derivatives!y g y g y
The computationally expensive Direct Differentiation (DD) method

is used to compute reference sensitivities (to compare with).

n t n tF V p dS V p dSρ ρ= −∫ ∫
in outS S
∫ ∫

Re=1×106 Re=3.5×105
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Adjoint to the Spalart-Allmaras (SA) Turbulence Model

Does this affect the Optimization Turnaround time?
Demonstration using Steepest Descent, with the same step η

in out

n t n t
S S

F V p dS V p dSρ ρ= −∫ ∫
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Adjoint to the Spalart-Allmaras (SA) Turbulence Model

•An additional adjoint PDE (the adjoint to the S A model eq )

Extra equations/terms & computational effort
New terms may have a completely different importance

•An additional adjoint PDE (the adjoint to the S-A model eq.)

(…plus boundary conditions)

•New terms in the adjoint momentum eqs. (by far the most important!)

N i h dj i b d di i

A.S. ZYMARIS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU, C. OTHMER: ‘ Continuous Adjoint

•New terms in the adjoint boundary conditions.
•New terms in the sensitivity derivative expressions.
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A.S. ZYMARIS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU, C. OTHMER:  Continuous Adjoint 
Approach to the Spalart-Allmaras Turbulence Model for Incompressible Flows’, Computers & Fluids, 
38, pp. 1528-1538, 2009.



Adjoint Wall Functions (k-ε Model)

Differentiation of  High-Re Turbulence Models
A New Adjoint Law of  the Wall

Demonstrated for the k-ε model. Exists for Spalart-Allmaras & k-ωp

ΔΔ

Adjoint 
Friction

j
friction 
velocity

Friction 
velocity
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A.S. ZYMARIS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU, C. OTHMER: ‘Adjoint Wall Functions: 
A New Concept for Use in Aerodynamic Shape Optimization’, J. Comp.P hysics, 229, pp. 5228–5245 , 2010.



Adjoint Wall Functions (k-ε Model)

Computation of  Sensitivity Derivatives on the starting geometry
Subsonic Flow in an axial diffuser, with incipient separation, Re=1x106

Objective function: mass-averaged total pressure lossesj g p
Without running the Optimization Loop

Design of  an axial diffuser for min. total pressure losses (Re=1x106).
(Objective: mass-averaged pt losses)
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(Objective: mass averaged pt losses)



Adjoint Wall Functions (Spalart-Allmaras)

Why to do it? First example!
Subsonic Flow around NACA4415

Important Finding: Using the adjoint “low-Re” model yields worst resultsp g g j y
than the “Frozen Turbulence Assumption”!!!
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Applications of the Adjoint Method in Turbomachinery

Design-Optimization of  two Peripheral Compressor Cascades
Target: Minimum Viscous Losses

Constraints on the Flow Turning & the Blade Thicknessg
Turbulence Model: Spalart-Allmaras
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Differentiation of Distance Δ (in Turbulence Models) 

Applied for Turbulence Models involving the Distance from the Wall
Including Wall Functions

Inspired by the AIAA J. paper, March 2012 by Bueno-Orovio, et al.p y J p p , y ,
Differentiate the Hamilton-Jacobi eq., governing the distance Δ

New State Eq : ,New State Eq.:

New Adjoint Eq. (decoupled):j q ( p )

New Sensitivity Derivatives:
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Differentiation of Distance Δ (in Turbulence Models) 

Demo: In some cases, ignoring δ(Δ) might be detrimental
NACA12 Airfoil, Re=6x106, ainf=3o

NACA12 F= -Lift, Sensitivities wrt the y of  Bezier control points, y p
Spalart-allmaras, low-Re model, Re=6x106, ainf=3o

Important: In this case, the “frozen distance assumption” yields error in the sign!
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Newton Method & Hessian(F) Computation 

The straightforward way to compute the Hessian
Twice application of  the Direct Differentiation Method (DD-DD)

Shown in Discrete. Formulated and programmed also in Continuous Modep g
Very expensive! Nothing to gain from the use of  the Newton’s method.

Newton Method:

k=1,…,N  design variables
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► Cost of  the DD-DD approach scales with N2.



Computation of the Hessian Matrix, via DD-AV

How to compute the Hessian with the lowest CPU cost
DD-AV, equivalent to “tangent mode, then reverse mode”

Shown in Discrete. Formulated and programmed also in Continuous Modep g
The gain from using the Newton’s method (if  any) depends on N

System solutions (EFS)

EFS

The Adjoint equation is the same with that solved to compute the Gradient !!!
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► The cost per Newton cycle is N+1+1=N+2 EFS! Scales with N, not N2.



Computation of the Hessian Matrix, via DD-AV

With Continuous Adjoint 
See references (on both discrete & continuous approaches)

D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Direct, Adjoint and Mixed Approaches for the Computation , , j pp p
of  Hessian in Airfoil Design Problems’, Int. Num. Meth. in Fluids, 56, 1929-1943, 2008.

D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Computation of  the Hessian Matrix in Aerodynamic Inverse 
Design using Continuous Adjoint Formulations’, Computers & Fluids, 37, 1029-1039, 2008.

K C GIANNAKOGLOU D I PAPADIMITRIOU ‘Adj i M h d f di d H i b dK.C. GIANNAKOGLOU, D.I. PAPADIMITRIOU: ‘Adjoint Methods for gradient- and Hessian-based 
Aerodynamic Shape Optimization’, EUROGEN 2007, Jyvaskyla, Finland, June 11-13, 2007.

D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Aerodynamic Shape Optimization using Adjoint and Direct 
Approaches’, Arch. Comp.Meth. Engi.(State of  the Art Reviews), Vol. 15(4), pp. 447-488, 2008 .
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pp p g ( ) ( ) pp
D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘The Continuous Direct-Adjoint Approach for Second Order 

Sensitivities in Viscous Aerodynamic Inverse Design Problems’, Computers & Fluids, 38, 1539-1548, 2009. 



An Improved Approach – Application 1

The Exactly-Initialized-then-Quasi-Newton method
Application: Inverse design of  a Compressor blading (6 design variables)

Compute the Hessian only in the first cycle, then switch to quasi-Newton method (BFGS)p y y , q ( )

vs.
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(FD)                                                 (DD-AV)                                                 



The Truncated Newton method

The only way to efficiently handle problems with N>>
Compute Hessian-vector products instead of  the Hessian itself

Inspired by:
Th C j t G di t (CG) th d f l iThe Conjugate Gradient (CG) method for solving
systems of linear equations

requires only matrix-vector products.
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The AV-DD Truncated Newton Method (with CG)

Total Cost= 2+2MCG << N
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AV-DD Truncated Newton method – Why?

Application: Inverse design of  an isolated airfoil, N=42 DOFs
Compute Hessian-vector products instead of  the Hessian itself

Comparison of  three solution methods
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D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Aerodynamic design using the truncated Newton algorithm 
and the continuous adjoint approach’, Int. J.for Numerical Methods in Fluids, 68, 6, pp. 724-739, 2012.



Robust Design

The Second-Order, Second-Moment (SOSM) Approach
For N design (bi) & M environmental (ci) variables

Minimize the estimated mean & standard deviation of  F
Third-order mixed derivatives must be computed

Proposed method: DDc-DDc-Avb (if  M<N)
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Robust Design - Application

Robust Design of  a Compressor Cascade
Two environmental variables (M=2): Inlet flow angle & exit isentropic Mach number

E.M. PAPOUTSIS-KIACHAGIAS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Robust Design in 
Aerodynamics using 3rd-Order Sensitivity Analysis based on Discrete Adjoint. Application to Quasi-1D 
Flows’, International Journal for Numerical Methods in Fluids, Vol. 69, No. 3, pp. 691-709, 2012., J , , , pp ,
E.M. PAPOUTSIS-KIACHAGIAS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: Discrete and 
Continuous Adjoint Methods in Aerodynamic Robust Design problems, CFD and Optimization 2011, 
ECCOMAS Thematic Conference, Antalya, Turkey, May 23-25, 2011.
D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU: ‘Third-Order Sensitivity Analysis for Robust
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, y y
Aerodynamic Design using Continuous Adjoint’, International Journal for Numerical Methods in Fluids, 
Vol. 71, No. 5, pp. 652-670, 2013.



Flow Control Optimization

Optimal flow control using suction/blowing/pulsating jets
Idea: Compute the sensitivity derivatives by solving the flow & adjoint problem once, 

for  normal jet velocity=0. Use the computed sensitivity maps to optimally locate the jets _j _ y p y p p y j
and their sign to decide whether suction or blowing is needed. 

Stop here or iterate to optimize all jet parameters.

FDrag=0.0222 FDrag=0.0095

C ll d CControlled Case

A.S. ZYMARIS, D.I. PAPADIMITRIOU, K.C. GIANNAKOGLOU, C. OTHMER: ‘Optimal Location of  Suction 
or Blowing Jets Using the Continuous Adjoint Approach’, ECCOMAS CFD 2010, Lisbon, June 14-17, 2010.

A.S. ZYMARIS, D.I. PAPADIMITRIOU, E.M. PAPOUTSIS-KIACHAGIAS, K.C. GIANNAKOGLOU, C. 
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OTHMER: ‘The Continuous Adjoint Method as a Guide for the Design of  Flow Control Systems Based on 
Jets”, Engineering Computations, to appear 2013.



Unsteady Continuous Adjoint for Flow Control

Slot Amplitude

Flow around a square (Re=100) – Control with Pulsating Jets

1 0.0484

2 0.0707

3 0.0721

4 0.0186

5 -0.0124

6 -0.0218

7 -0.0264

8 -0.0260

9 0 04009 0.0400

10 0.0948

11 0.0193

K.  GIANNAKOGLOU,    NTUA   32



Topology Optimization & Continuous Adjoint Method

Formulations based on porosity (a)
Alternative formulations based on the level-set method excluded for this talk

Flow Model: 
Incompressible fluid
Turbulent flow
With heat transfer

K.  GIANNAKOGLOU,    NTUA  33



Topology Optimization & Continuous Adjoint Method

Adjoint equations

E.A. KONTOLEONTOS, E.M. PAPOUTSIS-KIACHAGIAS, A.S. ZYMARIS, D.I. PAPADIMITRIOU, K.C. 
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GIANNAKOGLOU: ‘Adjoint-based constrained topology optimization for viscous flows, including heat 
transfer, Engineering Optimization, 2012.



Topology Optimization & Continuous Adjoint Method

AFTER

Optimal
Porosity

BEFORE AFTER
Field

BEFORE

Objective: Min. pt Losses – Continuous Adjoint to [RANS & Spalart-Allmaras]. 
Recirculation areas disappeared - 15% total pressure losses reduction.pp p

Primal Adjoint 
Velocity

j
Velocity
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Topology Optimization & Continuous Adjoint Method

Topology optimization of  a manifold
at laminar flow conditions.

Unconstrained

With constraint on 
the mass flowrate per exit

With constraint on the
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With constraint on the
Flow swirl at the exit



Closure

► Working with continuous adjoint is nice because you gain insight into adjoint PDEs &
their BCs or clearly understand/control the assumptions made.

► Stop working with the “frozen-turbulence assumption”.p g p

► The adjoint law of the wall is a useful tool for industrial applications.

► High-order derivatives can be computed using continuous or discrete adjoint.
Interesting alternatives: (one-shot) exactly-initialized quasi-Newton algorithm,Interesting alternatives: (one shot) exactly initialized quasi Newton algorithm,
truncated Newton. Useful in adjoint-based robust design.

► Continuous adjoint is neither better nor worse than discrete. Any problem whichcan be
solved with discrete can also be solved with continuous adjoint and vice-versasolved with discrete, can also be solved with continuous adjoint and vice-versa.

On-going research:
► Think-discrete-do-continuous...

► Robustness of adjoint solvers…

► Efficient adjoint methods for Pareto optimization…
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