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ABSTRACT 

 
In this article, semi-monocoque wing structures are optimized for minimum weight by using different 
one and two dimensional element pair combinations, which are typically used to model the sub-
elements of semi-monocoque wing structures, in the finite element models. The main objective of the 
study is to investigate the effect of using different one and two dimensional finite element pairs in the 
finite element models on the optimized configurations of the wing structure, and propose alternative 
optimized initial wing configurations to be considered as starting points in the detailed structural design 
phase. During the optimization study, structural optimization is performed by the coarse and fine mesh 
finite element models, and the effect of mesh size on the optimized wing configurations is studied. 
Optimization of the wing structures are performed by employing both continuous and discrete variable 
optimization. In case of optimization of wing structures with many design variables, it is very probable 
that local optimum designs may be reached if different starting values are used for the design 
variables during the optimization. Therefore, the effects of different starting points, as well as the effect 
of relaxing the constraints, on the optimized wing configurations are also investigated. The effect of 
using different one and two dimensional element pairs on the final optimized configurations of the wing 
structure is investigated, and conclusions are inferred with regard to the sensitivity of the optimized 
wing configurations with respect to the choice of different element types in the finite element model. 
Final optimized wing structure configurations are also compared with the simplified method based 
designs which are also optimized iteratively. 
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INTRODUCTION  

 
Optimization methods are used in the structures area in many engineering fields for a long time. 
Achieving minimum weight design, while satisfying certain constraints is the most common strategy 
that is followed in structural optimization.Weight saving in aerospace structures is becoming ever more 
significant. 
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Thin walled lifting surfaces are regions where substantial weight savings can be achieved if 
optimization techniques are used early in the design phase. In recent years, structural optimization 
has been combined with finite element analysis to size structures that may minimize weight subject to 
a number of constraints. In the literature, one can find a large number of references in the area of 
structural optimization. A number of key studies were carried out in the field of optimization methods 
and their use in structural engineering areas. One review article is the work of Wasiutynski and Brandt 
who conducted a study in the field of optimum design of structures in 1960s [16]. In the area of 
optimum structural design concepts for aerospace vehicles Gerard presented a generalized approach 
for optimum design theory and preferred methods of presenting optimum design results [15]. The 
paper by Ashley gives an excellent re-view on the use of optimization in aeronautical engineering [13]. 
Another study on the subject of optimization of wing structures presented by Richard Butler who 
presented an overview of some of the existing optimization methods which may be applied at various 
stages during the design of wing structures [8]. Traditional modeling approach of aerospace 
structures, which are characterized by very thin elastic sheets and stiffeners, is to use shear panels to 
model thin sheets and use rod elements to account for the extensional behavior of the stringers. In 
general, to model thin walled shell structures three main element types may be used. These elements 
are shear panel, and shell elements having only membrane or only bending or both membrane and 
bending behavior [5]. Revised formulation of shell elements, which takes the drilling degrees of 
freedom into account, are also used depending on the external loading condition. On the other hand, 
stringers or spar caps may be modeled with beam or rod elements. The correct use of the element 
types is linked very closely to the loading condition. Many commercial finite element programs have 
built-in optimization modules which work in conjunction with their finite element solvers. For instance, 
optimization module of MSC Nastran

 
[4] utilizes the DOT optimization algorithms from Vanderplaats 

Research and Development Inc.[2]. MSC Nastran employs a number of techniques, which are referred 
to as approximation concepts, to make design optimization possible for large finite element models. A 
more thorough literature survey on the optimization of wing structures is given by Ekren and Kayran 
[7]. 
In the present study, structural optimization is performed by MSC Nastran using different combinations 
of two dimensional and one dimensional finite element pairs, which are used to model sub-elements of 
wing structures. Present article deals with property optimization, therefore, location of spars, stringers 
and ribs are taken as constant and shape optimization is not considered. Wing structures are 
optimized with the objective of minimizing the weight of the wing while satisfying stress, deflection and 
local buckling constraints, and a number of side constraints are used to drive the optimizer towards 
the optimum solution faster. With the present study, it is intended to investigate the effect of using 
different elements on the final optimized configuration of the wing structure, and to infer conclusions 
with regard to the sensitivity of the optimized wing configuration with respect to the choice of different 
element types in the finite element model. During the optimization study, the effect of design 
constraints on optimum wing configurations is also evaluated by relaxing certain constraints such as 
deflection and local buckling. Optimization of the wing structures are performed by employing both 
continuous and discrete variable optimization. The discrete variable optimizations methods, which are 
available in MSC Nastran, are also compared with each other in one case study. Final optimized wing 
structure configurations are also compared with the simplified method based designs which are also 
optimized iteratively in another study. 
 

OPTIMIZATION PROCESS IN MSC.NASTRAN 
 

Design optimization capability of MSC Nastran is composed of two parts. The first part is the analysis 
model, in which grid locations, element structure and properties, material information, loads, boundary 
conditions and load cases are described. The second part is the design model which defines the 
design variables, relates the design variables to element properties, defines the design responses, 
and describes constraints and objectives in the design model. The initial design is the input to the 
MSC.NASTRAN® optimization process. In MSC.NASTRAN® optimization process, a finite element 
analysis is performed first and for design sensitivity and optimization, it is frequently necessary to 
perform multiple analyses. The constraint screening activity refers to the process that is used to 
identify those constraints that are likely to drive the redesign process. In another words by the 
constraint screening activity those constraints that are violated or likely to be violated are identified. 
These are set to be as active constraints. Sensitivity analysis is always performed automatically in 
MSC.NASTRAN® whenever design optimization is requested. Design sensitivity analysis computes 
the rates of change of structural response quantities or a change in constraint values with respect to 
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changes in design variables. MSC.NASTRAN® uses the DOT optimization code in the background as 
the optimizer [2]. The approximate model is constructed by using the information from finite element 
analysis and sensitivity analysis. This model involves the construction of high-quality approximations 
to the finite element results so that the number of full scale finite element analyses is kept to a 
minimum. Optimizer performs optimization process by using the approximate model. By default, 
gradient based method is used to construct the improved design. Other available methods are 
sequential linear programming and sequential quadratic programming. 
The improved model is the point at which the finite element model is updated based on the results 
from the optimizer so that a new finite element analysis is started. The improved model is compared 
with the previous model and if the changes are below the desired value, this means that soft 
convergence is achieved. Then, after the finite element analysis, one more convergence test for hard 
convergence is performed. Detailed information about MSC.NASTRAN® sensitivity analysis and 
optimization process is given in Reference [4]. However, it would be worthwhile to overview the 
approximation concepts used in structural optimization in more detail. The optimizer programs need 
frequent function evaluations to calculate design responses and response derivatives to calculate 
design sensitivities. Therefore, the cost of optimization becomes very high if traditional optimization 
approach is followed which is depicted in Figure 1.  
 

 
 

 

 

 

 

Figure 1. Traditional optimization approach 

 

The traditional approach of optimization, as it can be seen from Fig. 1, involves request for a finite 
element analysis whenever the optimizer needs function evaluations. Therefore, in most design 
problems unless the problem is small in scale, the traditional approach tends to be useless. To 
overcome this major drawback, MSC Nastran employs concepts that limit the number of required finite 
element analysis. These concepts are named as approximation concepts used in structural 
optimization and they can be grouped into three major categories. 

Design variable linking: 

Design variable linking refers to narrowing the design task to that of determining the best combination 
of just few of design variables. It becomes much more efficient to link design variables if possible. That 
is, it would be advantageous if all the design variables could be varied in a suitably proportional 
manner according to the changes made to a much smaller set of independent variables. In Nastran 
this task is established by the user. 

Constraint Screening: 

Another concept which is employed by MSC Nastran that simplifies the numerical optimization 
process is to delete constraints which are not critical. In order to achieve constraint deletion, 
constraints that are violated or nearly violated must be identified. These constraints which are likely to 
be violated are the ones which derive the design. Constraint deletion allows the optimizer to consider 
a reduced set of constraints, and also reduces the computational effort associated with determining 
the required structural response derivatives.  

Approximate Design Model: 

Once the constraint set that seems to be deriving the design is identified, the next step that MSC 
Nastran follows is to perform parametric analysis in order to determine how these constraints vary as 
the design is modified. A parametric study is carried out with formal approximations, or series 
expansions of response quantities in terms of design variables. Formal approximations make use of 
the results of sensitivity analysis to construct an approximation to the true design space. Although 
formal approximations are locally valid, they are explicit in the design variables. The resultant explicit 
representation can then be used by the optimizer whenever function or gradient evaluations are 
required, instead of the costly implicit finite element analysis. The use of the approximate model is 
illustrated in Figure 2. Finite element model forms the basis for creation of the approximate models 
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which is subsequently used by the optimizer. The approximate model includes the effect of design 
variable linking, constraint deletion, and formal approximations. Constraint deletion and formal 
approximations are performed automatically in MSC Nastran [4] 

  

  

  

  

  

  

  

  

  

  

  

 

Figure 2. Coupling finite element analysis and optimization using approximate  
design model [4] 

 
Once a new design has been proposed by the optimizer, based on the information supplied by the 
approximate model, in the next step a detailed analysis is performed of the new configuration to see if 
it has actually managed to satisfy the various design constraints and make improvement in the 
objective function. The upper segment denoted by ‗Design Improvements‘ in Figure 3 represents the 
re-analysis update of the proposed designs. If a subsequent approximate optimization is needed, the 
finite element analysis serves as the new baseline from which to construct another approximate sub-
problem. This cycle may be repeated as necessary until convergence is achieved, and these loops are 
referred to as design cycles in MSC Nastran [4]. Expanded version of Figure 2 is given in Figure 3. 
MSC Nastran utilizes the DOT optimization algorithm from Vanderplaats R&D, Inc. [2]. As Figure 3 
shows, the optimizer interacts with the approximate model rather than the finite element model and 
produces an improved design. Once the improved design is obtained, the finite element model is 
updated based on the results from the optimizer so that a new finite element analysis can be 
performed.  

 

Figure 3. MSC.NASTRAN® Implementation of Structural Optimization [4] 

https://www.vrand.com/
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A key part of the implementation of the optimization process is to determine when to stop the 
iterations. There are two levels at which convergence is tested. The lower level is at the optimizer 
level, and it is at this level where the optimizer decides on the optimized solution based on the output 
of the approximate model. The second and higher level is with respect to the overall design cycles. 
Figure 3 shows the locations of higher level of convergence tests. As shown in Figure 3 hard 
convergence compares the most recent finite element analysis with those from the previous design 
cycle. Since this test compares exact results from two consecutive analyses, it is named as hard 
convergence. This test is used as the default test for determining whether or not to terminate the 
design-cycle process. On the other hand soft convergence compares the design variables and 
properties output from the approximate optimization with those of the input to the approximate 
optimization. If design variables and properties have not changed appreciably, another finite element 
analysis may not be asked for. 
 
 

OPTIMIZATION METHODS IN MSC.NASTRAN 
 
Optimization problems can generally be described as either continuous or discrete, but may be a mix 
of both. MSC.NASTRAN® Sol 200 supports comprehensive structural design optimization for 
continuous design variables and also has the ability to apply discrete variables in the optimization 
process. This is done in recognition of the fact that practical engineering considerations frequently 
dictate that values of the designed properties be chosen from a discrete set. While the variables in 
continuous optimization problems are allowed to take on any values permitted by the constraints, 
discrete optimization is concerned with the case where the variables may only take on discrete values. 
MSC.NASTRAN® developed and implemented approaches to deal with discrete variables with limited 
computational cost. Design of Experiments (DOE) and Conservative Discrete Design (CDD) 
approaches together with engineering round-off and round-up methods, can be used to process 
discrete variables at any specified continuous design optimization cycle for structural design problems 
[4, 6]. The discrete optimization methods are briefly reviewed. 
 
A.  Round-Up and Round-Off Discrete Variable Processing Methods 

These two methods are applied simply by rounding up or down the continuous solution obtained from 
solving a corresponding continuous optimization problem. These two methods have been 
implemented in MSC. Nastran® for quick discrete design solutions. These methods simply automate 
the simple rounding process a user might employ after a continuous optimization and require no new 
analyses. 

B.  Conservative Discrete Design (CDD) Variable Processing Method 

The CDD approach is employed to quickly obtain a conservative discrete solution based on the 
continuous optimal solution and by using the sensitivity information values. For the CDD method, each 
variable is independently set to the discrete values that bracket the continuous variable result. An 
approximate analysis is carried out for the discrete variable above the continuous value and one with 
the discrete variable below the continuous value. The constraint results of these two analyses are 
compared and the discrete variable is chosen that gives the minimum value for the maximum 
constraint. This is repeated for each design variable so that 2*nddv (where nddv is the number of 
design variables that can take on discrete sizes) approximate analyses are carried out for the CDD 
approach. The advantages of CDD methods is that it may be used for a design with large number of 
discrete variables, and it is able to produce better discrete solution than round-off method.   

C.  Design of Experiments (DOE) Variable Processing Method 

The DOE approach aims to obtain a good discrete design by evaluating the approximate objective and 
constraints with extra but limited computational cost. The implementation of DOE employed in MSC. 
Nastran employs an exhaustive search when nddv (the number of design variables that can take on 
discrete sizes) is 2

16
 or less. Above this value, an Orthogonal Array concept is employed to select 

candidate arrays that provide a representative sampling of the overall design space. The continuous 
optimal design obtained from current SOL 200 is used instead of the initial design model as a baseline 
for discrete variable processing. DOE assumed that the discrete optimum is close to the continuous 
optimum, and it is expected that a discrete solution by the DOE be close to the discrete optimum due 
to the selected design baseline. Therefore, searching a feasible discrete design is emphasized in the 
DOE processing. A major advantage of the DOE is its simplicity in applications, non-gradient 
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methodology, and ability to handle discrete variables. More detail information and discussion about 
DOE can be found in References [6, 10]. 

 

STRUCTURAL OPTIMIZATION OF THE WING STRUCTURE 

 
The wing structure that is used in optimization is assumed to be for a single utility aircraft having a 
maximum take-off weight of 1460 kg and minimum operating weight of 861 kg. The wing structure is 
straight and unswept, and has a NACA 2412 airfoil profile with a rectangular planform, with a chord 
length of 1.524 m and semi-span of 4.572 m. Wing structural optimization is done for a two-spar, two-
stiffener and seven-rib configuration dividing the wing into 6 equal sections of length 0.762 m. The root 
extensions of the front and rear spars are of 0.5 m in length. The front spar is located at 25 % of the 
chord length; the rear spar is located at 70% of the chord length, and the upper and lower stiffeners 
are located respectively at 50 % and 46% of the chord length. Figure 4 shows the wing model with the 
spars, stiffeners and ribs that is used in the optimization study. 

 
            (a) Wing torque box model                                (b) Spars, Stiffeners and Rib locations 

 
Figure 4. Wing model used in the optimization study  

 
 

External Aerodynamic Loading Acting on the Wing  

The aerodynamic loading is distributed to the wing structure in a discrete fashion by calculating 
equivalent force components at the 25 % of the chord length. The calculation of the external 
aerodynamic load is performed using the code provided by ESDU, ESDUpac A9510 attached in 
ESDU 95010 [11]. Lift force and pitching moment are considered as line loading, and they are 
distributed along the lower front spar as shown in Fig.5. Wing is fixed at wing root extensions, which 
are not considered in the optimization process.  
 

 Figure 5. Distribution of the external aerodynamic loading 
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DESCRIPTION OF THE OPTIMIZATION STUDY 

A.  Methodology  

This section introduces the finite element models of the wing structure which are generated by using 
different one and two dimensional element pairs.The main objective of using different one and two 
dimensional finite element models is to investigate their effect on the final optimized configuration of 
the wing structure and also to make comparisons between the final optimized results obtained by 
these different models. Table 1 summarizes the element pairs that are used to model the one 
dimensional and the two dimensional members of the wing structure.  

 

Table 1. Combination of element types used in modeling the wing structure 

Model Thin Walled Panels Spar Caps and Stringers 

1 Shell Element (CQUAD4) Rod Element (CROD) 

2 Shell Element (CQUAD4) Beam Element (CBAR) 

3 Shell-R Element (CQUADR) Rod Element (CROD) 

4 Shell-R Element (CQUADR) Beam Element (CBAR) 

5 Membrane-R Element (CQUADR) Rod Element (CROD) 

6 Membrane-R Element (CQUADR) Beam Element (CBAR) 

 
Shell and membrane elements with –R extension are the so-called revised elements of Nastran which 
also have drilling degrees of freedom. It should be noted that the distributed line lift and pitching 
moment loading necessitates the use of revised membrane elements in the wing ribs, because with 
the standard membrane elements in the wing ribs, the distributed pitching moment cannot be handled 
accurately. In addition, in order to handle the distributed line lift and pitching moment accurately, in the 
finite element models with revised membrane elements, single elements must be used between the rib 
stations 

B.  Definition of the optimization problem  

The wing torque box structural optimization deals with property optimization, therefore, location of 
spars, stringers and ribs are taken as constant and shape optimization is not considered in this study. 
The wing torque box optimization problem is defined as: 
 
Objective Function:  

 Minimize the weight of the wing torque box. 
 

Constraints:  
 
Stress Constraints:  

 Von-Misses stresses in skins, spar webs and ribs: The lower limit is unconstrained; the upper 
limit is constrained with a maximum value of 322 MPa which is used as the allowable stress in 
the current study.   

 Axial stresses of spars and stiffeners: The lower limit is constrained with a compression stress 
value of 322 MPa (-322 Mpa), and the upper limit is constrained with a tensile stress value of 
322 MPa.  
 

Deflection Constraints: 

 The maximum tip displacement of the wing torque box is limited to 20 cm.  
 

Local Buckling Constraints:  
Local buckling equations are defined by design equations and entered externally to the MSC. Nastran 
input file.  

 Buckling of skin panels is assumed to be due to combined shear stress and compression axial 
stress.  

  
            

  

    
 

 
  
 

 

   
            

    
 

 
  

                                                                                                       (1) 
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 Buckling of spar webs is due to combined bending and shear stress. 
 

  
    

          
  

    
 

 
  
 

 

   
            

    
 

 
  

 

 

                                                        (2) 

 Buckling of ribs due to shear stress only. 
 

 
  

    
 

 
  

 

                                                                                                                       (3) 

 
The lower limit is unconstrained; the upper limit is constrained with a maximum value of 1.01. 
 
Geometric or Side Constraints: 
 
Side constraints are added to the definition of the optimization problem so as to drive the optimizer 
towards and optimum solution which makes sense from an engineering point of view. It should be 
noted that since the external load decreases from root to tip, and in the load case no local 
concentrated forces are considered along the span of the wing, side constraints drive the optimizer in 
the correct direction towards optimum solution. Side constraints are again externally defined by writing 
design equations in the input file. 

Constraints on Thicknesses of Thin Walled Panels:  
 

 Thicknesses of skin and web panels and ribs are forced to decrease bay by bay from the root 
to the tip of the wing in a discrete fashion. No thickness variation is allowed in a bay. Design 
equations relating the thicknesses are defined and entered externally to the MSC. Nastran 
input file. Such a constraint definition is necessary because in the gradient based optimization 
of wing torque box, it is very likely that the solution reached is a local optimum solution. In the 
analyses carried out, it is experienced that in some of these local optimum solutions, 
thicknesses of some inboard thin panels turned out to be smaller than the thicknesses of 
some outboard thin panels. Because in the gradient based solution, if the optimum solution is 
stuck around a local optimum, it may not get around it all the time, and in such cases such 
strange results are obtained. Therefore, in the present study, design equations are written in 
the input file such that thicknesses of the thin walled panels are forced to decrease from wing 
root to wing tip. Thus, the optimizer is derived towards an optimum solution which makes 
sense from an engineering point of view.  
 

Constraints on Spar Cap and Stiffener Areas:  
 

 Spar cap and stiffeners areas are forced to decrease bay by bay from the wing root to the tip 
of the wing in a discrete fashion. No area variation is allowed in a bay. Equations relating 
areas are defined by design equations and entered externally to the MSC. Nastran input file. 
The same reasoning that is written for the thicknesses is also valid here.  

 
Design Variables:  
 

 For the finite element models which have flanges and stringers modeled with rod elements, 92 
design variables are used which represent the thicknesses of wing skins, and spar webs, ribs,  
and spar flange and stringer areas. 

 For the finite element models which have flanges and stringers modeled with beam elements, 
128 design variables are used which represent the thicknesses of wing skins, and spar webs, 
ribs,  and beam height and widths. In beam modeling of spar flanges and stringers, it is 
assumed that beams have rectangular cross-sections. In the discrete solution, beam heights 
are selected from the standard thickness lists assuming that spar caps and stringers are cut 
from standard size sheets, whereas continuous optimum solutions are used for the beam 
widths since beam widths, which are cut from thin sheets, can be adjusted to be any 
continuous value. 
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Design variables associated with the thicknesses of thin walled panels: 
 

 Seven Nose Rib Thicknesses 

 Seven Mid rib Thicknesses 

 Six Front Spar Web Thicknesses 

 Six Rear Spar Web Thicknesses 

 Six Nose Skin Thicknesses  

 Six Upper Mid-Skin Thicknesses 

 Six Lower Mid-Skin Thicknesses 

 Six Upper Rear (Right) -Skin Thicknesses 

 Six Lower Rear (Right) -Skin Thicknesses 
 
Figure 6 illustrates the rendered coarsest mesh finite element wing model and shows the two 
dimensional elements which are used to model the rib webs ,skin panels and spar webs.  
 
 

 
Figure 6. Rendered Finite Element Model of the Wing  

 

Design variables associated with the areas of spar caps and stiffeners: 
 
(When Rod Elements are used): 
 

 Six Front Spar Upper Cap Areas  

 Six Front Spar Lower Cap Areas 

 Six Rear Spar Upper Cap Areas 

 Six Rear Spar Lower Cap Areas 

 Six Upper Skin Mid Stiffener Areas 

 Six Lower Skin Mid Stiffener Areas  
 
(When Beam Elements are used): 
 

 Twelve Front Spar Upper Dimensions ( Width and Height) 

 Twelve Front Spar Lower Dimensions ( Width and Height) 

 Twelve Rear Spar Upper Dimensions ( Width and Height) 

 Twelve Rear Spar Lower Dimensions ( Width and Height) 

 Twelve Upper Skin Mid Stiffener Dimensions ( Width and Height) 

 Twelve Lower  Skin Mid Stiffener Dimensions ( Width and Height) 
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In the optimization process, all the thicknesses are assumed to have a lower limit of 0.0003 m and an 
upper limit of 0.00635 m. The caps areas of spars and stiffeners are assumed to be rectangular areas 
in the case of using rod elements with a lower limit of 0.000038 m

2
 and an upper limit of 0.000613 m

2
.  

In the case of using beam elements, lower limit of the width is assigned as 0.02 m and the upper limit 
of the width is taken as 0.15 m and no discrete values are assigned for it since the width is assumed 
to be cut from a thin sheet. Since any value between 0.02 - 0.15 m can be assigned as the width of 
the beam, width of the beam is a continuous design variable. On the other hand, beam height is taken 
as a discrete design variable and it is assumed that beam height is the same as the thickness of the 
standard thickness thin sheets.  In the optimization process, the lower limit of the beam height is taken 
as 0.0003 m and the upper limit is taken as 0.00406 m. The lower and upper limits of the thicknesses 
and flange/stiffener areas are taken as the lower and upper limits of the standard thicknesses and 
flange/stiffener areas [1, 9, 14]. The standard sheet thicknesses and flange areas are given below. 
 
Thin Panels Thicknesses Set {0.3, 0.4, 0.5, 0.63, 0.81, 1.016, 1.27, 1.20, 1.80, 2.03, 2.28, 2.54, 
3.17, 4.06, 4.82, 6.35} × 10

-3 
m 

 
Flange Cross Sectional Areas Set {38, 44, 48, 58, 63, 67, 73, 78, 88, 94, 98, 104, 108, 112, 116, 
118, 131, 133, 137, 148, 151, 153, 161, 184, 195, 213, 232, 246, 280, 312, 375, 390, 415, 430, 444, 
525, 573, 592, 613}  × 10

-6 
m

2 

 
Beam Heights Dimensions Set {0.3, 0.4, 0.5, 0.63, 0.81, 1.016, 1.27, 1.20, 1.80, 2.03, 2.28, 2.54, 
3.17, 4.06} × 10

-3 
m 

 
It should be noted that in applying the stress constraints for the skin and the web panels in a bay, for 
the fine mesh models, maximum stresses in the related domains are checked against the allowable 
stress value. In a bay, related domains are the skin and web panels shown in Fig.4, ribs and spar 
flange and stringer lines extending from one rib station to the other. On the other hand, for the local 
buckling constraints, average stresses in the thin walled panels are used to calculate the stress ratios 
to be used with the interaction equations used in local buckling checks under combined loading.  

OPTIMIZATION RESULTS USING DIFFERENT STARTING VALUES FOR DESIGN 
VARIABLES AND USING DIFFERENT DISCRETE OPTIMIZATION METHODS 

A.  Optimization results using different starting values for design variables  

In case of optimization of wing torque box with many design variables, it is very probable that local 
optimum design may be reached if different starting values are used for the design variables during 
the optimization. Therefore, the effect of different starting points on the optimized wing configuration is 
investigated in this section. The wing torque box is optimized by using rod-shell model with coarse 
mesh and using different starting points for the design variables. Again the objective function was to 
minimize the weight of the wing subjected to Von Misses stress, axial stress, tip deflection and local 
buckling constraints. Both continuous and discrete round-up solutions are conducted. The models with 
different starting vales for design variables are defined as follow: 
 
Model 1: Initial values are taken as lower limit of the design variables  
Model 2: Initial values are taken as mean of the lower and upper limit of the design variables 
Model 3: Initial values are taken as upper limit of the design variables 
Model 4: Initial values decrease by 10% for each bay starting from the maximum values at the root 
bay  
Model 5: Initial values decrease by 20% for each bay starting from the maximum values at the root 
bay 
Model 6: Initial values are taken as the values of the simplified method of solution obtained using the 
second structural idealization 
 
Table 1 shows the mass of optimized wing torque box using the same rod-shell model, but using 
different starting values for the design variables. In all solutions, hard convergence is achieved as well 
as hard feasible discrete design. 
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Table 1 Mass of optimized wing torque box (kg) using different starting  
values for design variables 

Mass of optimized wing torque box  (Kg) 

Model Continuous   Discrete - Round Up  

Model-1 41.03 kg  
 
 
 
 
 

45.93 kg 
Model-2 40.09 kg                                                      45.10 kg  
Model-3 41.29 kg 45.94 kg 
Model-4 39.85 kg  44.32 kg  
Model-5 39.80 kg 44.00 kg 
Model-6 41.09 kg 46.77 kg 

             
Table1 reveals that using different starting values for design variables, in the gradient based 
optimization problem, can lead to the local optimum designs, since the optimized wing configurations 
do not exactly have the same weights. However, the change in weights among the models is small for 
both continuous and discrete optimization solutions. Moreover, using the results determined by hand 
calculation (default results) as the starting values for the design variables during optimization; 
satisfactory solution is also obtained which is evident from the results given in Table 1.  

 
B.  Optimization study results using different discrete optimization methods  

In this section, the wing torque box is optimized by using rod-shell model with coarse mesh and using 
the discrete optimization methods described in previous sections of the present article. The goal is to 
understand and examine the effect and correct use of discrete optimization methods available in 
MSC.NASTRAN®. The objective function is to minimize the weight of the wing subjected to Von 
Misses stress, axial stress, tip deflection and local buckling constraints. Both continuous and discrete 
optimization solutions are conducted.  Table 2 shows the mass of optimized wing torque box using the 
same rod-shell model, but using different discrete methods.  
 

Table 2 Mass of optimized wing torque box (kg) using MSC.NASTRAN® 
 different discrete optimization method 

Mass of optimized wing torque box  (Kg) 

Method Continuous  Discrete 

DOE 41.09 kg  
 
 
 

44.81 kg 
CDD  41.09 kg 42.62 kg 
Round Up 41.09 kg  46.77 kg 
Round Off  41.09 kg 40.03 kg 

 
A hard convergence solution at an optimum value is achieved using four different discrete optimization 
methods but feasible discrete designs are obtained only for the DOE and the Round-Up methods. On 
the other hand, CDD method could not obtain a feasible discrete solution. The reason might be due to 
fact that while the CDD method tries to produce a true conservative design, it neglects the interaction 
of discrete variables such that the approximations may not be accurate enough to find a feasible 
design. The Round-off method could also not obtain a feasible discrete solution, since it uses simple 
rounding down from the continuous solution obtained from solving a corresponding continuous 
optimization problem which requires no new analyses. Therefore, the chance of finding a feasible 
solution becomes smaller, since the round-off method also neglects the effect of the interaction of 
discrete variables. 
In the article, the remaining discrete optimum solutions are determined by the round-up method based 
on the continuous solution obtained after solving the continuous optimization problem. 
 

STRUCTURAL OPTIMIZATION RESULTS OF THE WING STRUCTURE USING SIX 
DIFFERENT FINITE ELEMENT COMBINATIONS 

 
A.  Wing torque box optimization results including all design constraints  

In this section the wing torque box configurations given in Table 1 are optimized for minimum weight 
with all the design constraints included and for both coarse and fine mesh models. The effect of using 
different element types in the finite element model on the optimized wing torque box configurations is 
investigated, and the effect of mesh size on the final optimum configurations is studied by employing 
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finite element models, with different mesh densities. During the optimization process, hard 
convergence is achieved as well as hard and soft feasible discrete designs. Tables 3 and 4 show the 
masses of the optimized wing structures, obtained using different finite element combinations, given in 
Table 1, including all the design constraints. In Tables 3 and 4, optimized masses for the coarse and 
fine mesh cases, and the masses of the wing found by another study of the authors using simplified 
method of analysis based on unsymmetric beam theory utilizing two different structural idealizations 
are also given. The two different structural idealizations can briefly be described as [12, 14, 17]: 
 
Design criteria for structural idealization 1 (skins and webs carry shear load only and spar flanges and 
stringers carry axial stress) 

 Maximum shear stresses in the skins and webs of each bay should be less than the shear 
stress allowable 

 Maximum axial stress in the spar flange and stringers should be less than the stress 

 Local shear buckling of the wing skins and spar webs in each bay should be prevented 

Design criteria for structural idealization 2 (skins and webs carry shear and axial load and spar flanges 
and stringers carry axial stress) 

 Maximum Von-Misses stresses in the skins and webs of each bay should be less than the 
stress allowable  

 Maximum axial stress in the spar flange and stringers should be less than the stress allowable 

 Combined tension and shear local buckling of the lower wing skins should be prevented 

 Combined compression and shear local buckling of the upper wing skins should be prevented 

 Combined bending and shear local buckling of the spar webs should be prevented 

 
Table 3. Optimized masses of the wing structure – Coarse mesh results 

                                              Mass of optimized wing torque box  (Kg) 

Model Initial  Continuous    Discrete Round Up 

Rod/Shell 65.38 kg 41.09 kg 
38.28 kg 
38.88 kg 
38.29 kg 
39.01 kg 
37.77 kg 
52.18 kg   
62.90 kg                                                                       

46.77 kg 
42.97 kg 
43.57 kg 
42.11 kg 
44.07 kg 
42.84 kg 
57.61 kg  
67.69 kg 

Beam/Shell 65.38 kg 
Rod/Shell-R 65.38 kg 
Beam/Shell-R 65.38 kg 
Rod/Membrane-R 65.38 kg 
Beam/Membrane-R 
Simplified Method

1 

Simplified Method
2
                    

65.38 kg 
------------ 
------------ 

          1
 Structural idealization 2 

          2
 Structural idealization 1 

 
 

Table 4. Optimized masses of the wing structure – Fine mesh results 

                                              Mass of optimized wing torque box  (Kg) 

Model Initial  Continuous    Discrete Round Up 

Rod/Shell 66.67 kg 51.50 kg 
50.25 kg 
50.12 kg 
52.13 kg 
52.18 kg 
62.90 kg                                                                     

58.61 kg 
58.02 kg 
58.23 kg 
59.70 kg 
57.61 kg 
67.69 kg 

Beam/Shell 66.67 kg 
Rod/Shell-R 66.67 kg 
Beam/Shell-R 
Simplified Method

1 

Simplified Method
2
               

66.67 kg 
------------ 
------------- 

          1
 Structural idealization 2 

          2
 Structural idealization 1 

 
From Tables 3 and 4 it is clear that the initial mass of the fine mesh finite element models is slightly 
higher than the initial mass of the coarse mesh finite element models, because cambered surfaces of 
the wing is approximated better with the fine mesh.  
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It should be noted that in the discrete optimization, MSC Nastran is allowed to select the first round-up 
dimensions among a list of standard thicknesses and flange areas. Therefore, masses determined by 
the discrete optimization are higher than the masses determined by the continuous optimization. On 
the other hand, for each 1D and 2D element combination shown in Tables 3 and 4, the optimized 
mass of the wing torque box obtained using the fine mesh model in the optimization process, is higher 
than the optimized mass of the wing torque box obtained using the coarse mesh model. It should be 
noted that although the stresses at the centers of the domains of the bays are lower for the fine mesh 
models, maximum stresses of the fine mesh models in the domains of each bay are higher than the 
maximum stresses obtained by the coarse mesh models in the optimization process. For the coarse 
mesh case, the stresses at the element centers of the shell and bar elements are used in the stress 
constraint equations. Therefore, for the coarse mesh case, stresses at the element centers 
correspond to the mid bay locations. However, for the fine mesh case, stress constraints are written 
with respect to the maximum stress in the domains of each bay. Therefore, fine mesh models have 
higher stresses because maximum stress in a bay is at the inboard end of the bay. Thus, 
approximately there is 10 kg difference between the optimized masses of the wing torque boxes 
obtained by the coarse and fine mesh finite element models in the optimization process. However, the 
effect of local buckling and maximum deflection constraints should also be checked to confirm this 
conclusion. 
Results of the optimization study shows that optimized wing masses, determined by the use of the 
different finite element models in the optimization process, are very close to each other with only slight 
favorable overall mass on behalf of models which have spar flanges and stringers meshed with beam 
elements. 
The mass of the wing configuration designed by the simplified method using the second structural 
idealization is very close to the optimized masses determined by the use of fine mesh finite element 
models in the optimization process. However, simplified method of analysis using the second 
structural idealization is more comparable to the structural analysis performed by the coarse mesh 
finite element models.  From Table 3 it is seen that mass of the wing configuration designed by the 
simplified method using the second structural idealization has approximately 10 kg mass penalty 
compared to the optimized masses determined by the coarse mesh finite element models. It should be 
noted that results of the simplified method of analysis have been obtained by iterating over the 
standard thicknesses and standard flange areas, thus in a way, they are also optimized values. 
Therefore, optimized masses obtained by the use of the second structural idealization are very 
encouraging in terms of the applicability of the simplified method of analysis in the design and 
optimization of wing structures in the preliminary design stage.  
From the results given in Tables 3 and 4, it is seen that the standard shell elements and revised shell 
elements results in slightly different minimum mass wing configurations. However, the difference 
between the optimized masses is small. It is noticed that in the continuous optimization solution, in 
general, the use of shell elements with drilling degrees of freedom results in slightly lower minimum 
masses compared to the use of shell elements without drilling degrees of freedom. In the analysis 
study of the authors, it is noted that in general finite element analysis of the wing torque box with 
revised shell elements results in slightly lower stresses compared to the use of standard shell 
elements in the finite element model. Therefore, it can be concluded that results of the continuous 
optimization solution is in accordance with the stress analysis results.  
Results given in Table 3 also shows that the use of membrane elements, with drilling degrees of 
freedom, in the finite element model gives optimized masses which are very close to the optimized 
masses determined with finite element models having standard or revised shell elements.Therefore, it 
can be concluded that the use of revised formulation membrane elements in the coarse mesh finite 
element models is justified in structural optimization problems. However, in the coarse mesh models 
single elements are used between the rib stations, accuracy issue is still there.  
As a sample solution, Figures 7 and 8 show the history of the objective function, which is the total 
mass of the wing, with respect to design cycles for rod/shell model for the coarse and the finest mesh 
cases, respectively. Both hard and soft convergences are achieved in 15 design iterations for the 
coarse mesh and in 18 design iterations for the fine mesh models. For both coarse and fine mesh 
models, mass versus design iteration curves level out and converged solutions are achieved. 
Continuous optimization for the coarse mesh case is achieved in 14 design iterations but the last 
iteration corresponds to the round-up discrete solution. Similarly, continuous optimization for the finest 
mesh case is achieved in 17 design iterations.  In the round-up method, continuous solutions for the 
design variables are rounded-up to the first values in the standard size list for the design variables. 
Therefore, in Figures 7 and 8, the increase in the objective function value corresponds to the discrete 
solution obtained by using the round-up method. 
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Figure 7. Variation of the mass of wing with respect to design cycles –  
coarse mesh rod-shell model 

 
 

 

 

 
 
 
 
 
 

Figure 8. Variation of the mass of wing with respect to design cycles – fine mesh  
rod-shell model 

 
 
Figures 9 and 10 show the thickness scalar plots of the lower skin, spar web and rib panels, in the 
optimized wing structure which is modeled with rod/shell element combination for the coarse and the 
fine mesh models, respectively. It must be noted that these scalar plots refer to the results of discrete 
optimization solution. From the scalar plots, it can be seen that thicknesses of the panels decrease 
from the root to the tip of the wing, as expected. It should be reminded that the decrease of the 
thicknesses of skin/web/rib panels from the wing root to wing tip is specified as the side constraints.  
The solutions given in Figures 9 and 10 verify that the side constraints work fine, and thicknesses 
decrease from wing root to wing tip. 
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Figure 9. Thickness scalar plots of lower skin, spar web and rib panels in the optimized 
 wing torque box - coarse mesh rod/shell model 

 
 

 
Figure 10. Thickness scalar plots of lower skin, spar web and rib panels in the optimized 

 wing torque box - fine mesh rod/shell model 
 

 
Table 5 summarizes the spar cap areas of the front spar in the optimized rod/shell wing torque box 
model for both the coarse and fine mesh models. From Table 5, it is seen that spar caps cross 
sectional areas decrease from the root to the tip of the wing, as expected. The fine mesh model 
results in larger spar caps areas since when the mesh is made finer, maximum axial stresses in the 
spar and stringer domains in each bay increase, and inevitably the spar cap areas also increase to 
satisfy the axial stress constraints defined for one dimensional members.  
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Table 5. Upper and lower flange areas of the front spar of the wing – rod/shell model 

 
Front Spar Cross Sectional Area – Rod /Shell Model 

 

 
 
 
 
 
 
 
 

Upper 
Flange 

 
Spar Cap  

( Root to Tip) 

 
Coarse Mesh Model 

 
Fine Mesh Model 

 
Continuous 
Area (m

2
) 

 
Discrete 
Area (m

2
) 

 
Continuous 

Area (m
2
) 

 
Discrete 
Area (m

2
) 

Bay 1 2.75E-04 2.80E-04 6.13E-04 6.13E-04 
Bay 2 4.15E-05 4.40E-05 5.20E-04 5.25E-04 
Bay 3 4.03E-05 4.40E-05 2.61E-04 2.80E-04 
Bay 4 4.03E-05 4.40E-05 6.81E-05 7.30E-05 
Bay 5 3.80E-05 4.40E-05 3.80E-05 4.40E-05 
Bay 6 3.80E-05 4.40E-05 3.80E-05 4.40E-05 

 
 

Lower 
Flange 

Bay 1 6.13E-04 6.13E-04 6.13E-04 6.13E-04 
Bay 2 4.16E-05 4.40E-05 4.65E-04 5.25E-04 
Bay 3 4.00E-05 4.40E-05 2.43E-04 2.46E-04 
Bay 4 3.96E-05 4.40E-05 6.80E-05 7.30E-05 
Bay 5 3.80E-05 4.40E-05 3.80E-05 4.40E-05 
Bay 6 3.80E-05 4.40E-05 3.80E-05 4.40E-05 

 

B.  The Effect of Design Constraints on Optimum Wing Structure Configurations  

The effect of design constraints on optimum wing configurations is evaluated by relaxing certain 
constraints such as deflection and local buckling. In this section one of the wing torque box 
configurations (rod-shell model) is optimized for minimum weight while considering the effect of each 
constraint individually on the optimum design mass of the wing. The rod/shell model of the wing is 
optimized using the coarse and the fine mesh finite element models under the following constraints: 
 
Case 1- Stress constraints only 
Case 2- Stress and tip displacement constraints only 
Case 3- Stress and buckling constraints only 

 
Tables 6 and 7 give the masses of the optimized wing torque box obtained under different design 
constraints, for the coarse and the fine mesh cases, respectively. The first row of Tables 6 and 7 give 
the optimized masses for the full set of constraints including the stress, displacement and local 
buckling. 
 
 

Table 6.  Effect of constraints - Coarse Mesh Results 

Constraints 
Initial 

Mass(kg) 

Continuous 

Optimization(kg) 

Discrete 

Optimization(kg) 

Stress+deflection+buckling 65.38 41.09 46.8 

Stress 65.38  17.95  

31.94 kg 

30.20 kg 

21.10  

37.63 kg 

34.76 kg 

Stress+deflection 65.38  31.94 37.63 

Stress+buckling 65.38  30.20 34.76 
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Table 7.  Effect of constraints - Fine Mesh Results 

Constraints 
Initial 

Mass(kg) 

Continuous 

Optimization(kg) 

Discrete 

Optimization(kg) 

Stress+deflection+buckling 66.67 51.50 58.61 

Stress 66.67 26.84 30.37 

Stress+deflection 66.67 34.63 38.57 

Stress+buckling 66.67 45.51 51.72 

 
 
As it can be seen from Tables 6 and 7, optimization of wing torque box under stresses constraint only 
results in optimized masses which are significantly small when compared to the optimized masses for 
the rod/shell model with all the constraints included. The main reason for the large difference is due to 
relaxing the local buckling and tip deflection constraints in the optimization problem. Table 6 and 7 
also show that optimized masses determined by the use of fine mesh finite element models in the 
optimization process are higher than the optimized masses determined by the use of coarse mesh 
finite element models in the optimization process. Since for the particular optimization problem only 
stress constraints are used, with confidence it can be concluded that higher maximum stress of the 
fine mesh models in the domains of each bay is the main reason for the higher optimized mass 
obtained by the use of fine mesh model in the optimization process. 
By introducing the displacement constraint besides the stress constraint, the difference between the 
optimized masses determined by the coarse mesh and the fine mesh models become less when it is 
compared to the results under stress constraint only. Compared to the results of the optimization 
problem with stress constraints only, for the combined stress and displacement constraint problem, 
the increase of the optimized mass of the coarse mesh model is much higher than the increase of the 
optimized mass of the fine mesh model. This result is an indication that displacement constraint is a 
more stringent constraint for the coarse mesh model compared to the fine mesh model. 
Table 7 shows that for the fine mesh case, buckling constraint besides stress constraint results in 
higher optimized mass compared to the optimized mass obtained under stress and displacement 
constraints. This result is an indication of that local buckling is a much more stringent constraint than 
the deflection constraint for this particular problem. However, for the coarse mesh model, optimization 
using the stress and deflection constraints results in slightly higher mass than the optimization under 
stress and buckling constraints. This result is an indication of the significant effect of the mesh size on 
the optimum mass configurations. Since results of fine mesh finite element models are more reliable, it 
can be concluded that coarse mesh finite model underestimates the effect of local buckling constraint 
on the optimum mass configuration. 
 
 

CONCLUSION  
 

In the present article, the effect of using different one and two dimensional element pairs in the finite 
element models on the optimized configurations of the wing structure is investigated. Structural 
optimization results showed that optimized wing masses, determined by the use of different finite 
element models in the optimization process, are very close to each other with only slight favorable 
overall mass on behalf of models using beam elements in the axial members. It is also observed that 
in the continuous optimization solution, in general, the use of shell elements with drilling degrees of 
freedom results in slightly lower optimum masses compared to the use of shell elements without 
drilling degrees of freedom. However, differences are negligible from an engineering point of view.  
Optimized masses obtained with the fine mesh finite element models are higher than the optimized 
masses obtained with the coarse mesh finite element models. It should be noted that although the 
stresses at the centers of the domains of bays are lower for the fine mesh models, the maximum 
stresses in the domains of each bay are higher in the fine mesh finite element models. In the 
optimization solution, maximum stresses in the domains are used in the stress constraint equations. 
Therefore, when fine mesh finite element models are used in the optimization process, optimized 
masses turn out to be higher than the optimized masses obtained by the use of coarse mesh finite 
element models in the optimization process.  
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The mass of the wing configuration designed by the simplified method using the second structural 
idealization is very close to the optimized masses determined by the finite element based optimization 
process performed by MSC Nastran. Based on the preliminary results presented in the current study, 
it can be concluded that with the simplified methods, preliminary sizing of the wing configurations can 
be performed with enough confidence as long as the simplified method based designs are also 
optimized. 
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