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ABSTRACT 

This paper, first in a series of two, presents the 
development of a 3-D parallel flow solver for 
turbulent flows around rotating bodies using 
unstructured grids. Cell centered finite volume solver 
which employs Roe’s upwind flux differencing 
scheme, Spalart-Allmaras turbulence model and 
Runge-Kutta explicit multistage time stepping 
scheme is presented. Arbitrary Lagrangian Eulerian 
formulation is implemented for moving grids. The 
computational grid is partitioned by METIS and PVM 
is used for inter-process communication. The main 
objective of this study is to be able to solve unsteady 
turbulent flows around rotating missile configurations 
and to evaluate the aerodynamic stability derivative 
coefficients.  

  

INTRODUCTION 

The accurate prediction of missile aerodynamics is a 
major task for the missile industry. Determination of 
the aerodynamic forces and moments is very 
important for the prediction of the motion of 
projectiles. The rates of change of these forces or 
moments with respect to linear or angular velocity 
components, namely “stability derivatives”, play an 
important role in the dynamical analysis of the 
projectiles. So they must be obtained using various 
techniques. 

Stability derivatives can be determined both by 
experimental and theoretical methods. But some of 
these aerodynamic forces and moments, such as 
Magnus effect, can not be estimated with an 
acceptable accuracy even by experimental methods. 

Besides, experimental methods are expensive and 
require a long lead time for the resultant data. Semi-
empirical methods can be used for the estimation of 
such unknowns but these methods are limited to the 
subsonic flow region. A reasonable prediction of 
such force and moment coefficients can be 
performed by computational fluid dynamics methods 
(CFD). 

Solution of flow fields around complex geometries 
directly addresses the use of unstructured grids. In 
order to handle the turbulent flows around projectiles 
at high Reynolds numbers, which have to be 
predicted well to obtain the stability derivatives 
accurately, especially at the vicinity of wall 
boundaries high quality computational mesh is 
required. Use of such unstructured grids which have 
large number of computational cells in the 
computations, requires massive computational 
resources. In this study rotational effects of missile 
configurations is also included. It seems that only 
parallel architecture computers offer the promise of 
providing orders of magnitude greater computational 
power for such problems.  

The viscous phenomena that occur around missile 
configurations, such as boundary layer separations, 
wakes and vortices are quite important for missile 
aerodynamic characteristics. Also it is well known 
that the viscous phenomena are of primary 
importance in the study of unsteady flows. Shearing 
effects and possible instabilities result in small and 
large scale turbulent effects. So, prediction of the 
turbulent effects in the flow solutions is extremely 
important. 

The main objective of this study is, therefore, to 
develop a 3-D parallel flow solver for turbulent flows 
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around rotating bodies using unstructured grids, to  
obtain numerical solutions of Navier-Stokes equation 
on rotating grids and to be able to evaluate rotational 
effects [1]. 

 

GOVERNING EQUATIONS 

For a three-dimensional flow through a finite volume 
Ω  moving with a speed .v.cV

r
 which is enclosed by 

the boundary surface S and an exterior normal n
r

, 
integral form of the conservation equations in non-
inertial frame of reference are given as  

∫∫∫ ⋅=⋅+Ω
∂
∂

Ω SS

SdQSdFdU
t

rrrrr
    (1) 

where the column vector U
r

 represents the 
conservative variables, column vector F

r
 represents 

the convective flux vector, and column vector Q
r

 
represents the viscous diffusive flux vector. 
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where the fluid velocity is : kwjviuV
rrrr

++=  

and grid velocity is :  kwjviuV .v.c.v.c.v.c.v.c

rrrr
++=  

If the convective flux vector; kHjGiFF
rrrr

++=  is 
expressed explicitly: 
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If non-dimensional viscous diffusive flux vector; 

( )kQjQiQ
Re
MQ zyx

L

rrrr
++⋅= ∞  is expressed explicitly in 

the Cartesian coordinate system: 
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where viscous shear stress tensor components are: 
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and the heat conduction terms are: 
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Pressure is given by the equation of state for a 
perfect gas: 

( )⎥⎦
⎤
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222 wvu
2
1E)1(P ρργ     (7) 

Pechier et al. [4] state that grid movement only 
modifies the convection flux at finite volume surface 
so there is no contribution of grid movement on 
diffusive flux terms. 

The governing flow equations have been 
nondimensionalized by the free stream density ∞ρ , 
free stream speed of sound ∞c , free stream 
temperature ∞T , free stream viscosity ∞μ  and 
reference length L. 

 

Spalart-Allmaras Turbulence Model 

One-equation turbulence model of Spalart-Allmaras 
is employed in this study. The Spalart-Allmaras [13] 
turbulence model is a relatively simple one-equation 
model that solves a modeled transport equation for 
the kinematic eddy (turbulent) viscosity. It was 
designed specifically for aerospace applications 
involving wall-bounded flows and has been shown to 
give good results for boundary layers subjected to 
adverse pressure gradients. 

The transported variable in the Spalart-Allmaras 
model, ν~ , is identical to the turbulent kinematic 
viscosity except in the near-wall (viscous-affected) 
region. The transport equation for ν~  is 
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where the right-hand-side terms represent 
turbulence eddy viscosity production, diffusion and 
near-wall turbulence destruction terms, respectively. 

3
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2059.3C1CC 2b
2
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+=
σκ

 are constants, d is the 

minimum distance from the wall and ν  is the 
molecular kinematic viscosity.  

Turbulent viscosity is defined as: 

1turb f ~ ννρμ =       (9) 

where 
3

1
3

3

1
C

f
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ν
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χ

+
=  is the viscous damping 

function, 
ν
νχ
~

≡  and 1.7C 1v =  is a constant term. 

The vorticity magnitude S  which appears in the 
turbulence production term is modified such that 
S~ maintains its log-layer behavior [2]: 
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Modified versions of the functions )(f 2 χν  and )(f 3 χν  
are introduced by Spalart in order to eliminate the 
poor convergence of the residual turbulence 
especially near reattachment: 
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Guillen , et al. [2] state that these forms of )(f 2 χν  
and )(f 3 χν  functions result in a modification of the 
natural laminar-turbulent transition of the Spalart-
Allmaras turbulence model. 

The function 2tf  is introduced into the production and 
destruction terms in order to make 0~ =ν  a stable 
solution to the linearized problem [10]. This term 
does not allow eddy viscosity to increase in regions 
where it has the value corresponding to half of the 
laminar viscosity [3]. 

)Cexp(Cf 2
4t3t2t χ⋅−=    (13) 

where 3.1C 3t =  and 5.0C43 =  are constants. 

The eddy viscosity production is related to the 
vorticity [3]. S  is a scalar measure of the deformation 
tensor which is based on the magnitude of vorticity 
which takes the following form in two-dimensional 
space; 

y
u

x
vS
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∂
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∂
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Saxena and Nair [3] state that in a boundary layer 
the blocking effect of the wall is felt at a distance 
through the pressure term, which acts as the main 
destruction term for the Reynolds shear stress. In 
order to obtain a faster decaying behavior of 



AIAC-2005-078                                                                                      L. O.GÖNÇ, M.A.AK, M.H.AKSEL and İ.H.TUNCER 

4 
 

Ankara International Aerospace Conference 

destruction in the outer region of the boundary layer, 
a function wf  is used: 
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characteristic length and 3.0C 2w = , 0.2C 3w =  are 
constants. 

In order to adapt Equation (8) into the integral form, 
divergence theorem is applied to conservative and 
diffusive parts of the equation. Production term, 
destruction term and a part of the diffusion term that 
is excluded from the area integral are left as source 
terms in the integral form of the equation. 
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Non-dimensional form of the equation including the 
ALE formulation for moving bodies came out to be: 
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Note that as it was for the conservation equations, 
grid velocity is only introduced in the convective 
term. 

Special attention is given to the wf  term which has a 
dimensional term r  inside. This term is non-
dimensionalized as follows: 
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where all terms in this equation are previously non-
dimensionalized. 

The integral compact form of Equation (17) which is 
suitable for numerical calculations, is given by; 
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where the column vector turbU
r

 represents the 
passive scalar vector for working variable ν~ , column 
vector turbF

r
 represents the convective and diffusive 

flux terms, and column vector turbQ
r

 represents the 
source term; 
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NUMERICAL METHOD 

A cell centered finite volume discretization is applied 
to Equation (1) which is in integral form. Time rate of 
change of conservative variable vector U

r
 within a 

computational domain Ω  moving with a speed .v.cV
r

 
is balanced by the net convective and diffusive fluxes 
across the boundary surface S. 

In the finite-volume formulation, for a constant 
control volume of tetrahedron, Equation (1) 
becomes: 
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where cells of # ,,2 ,1i L=  

If Equation (24) is written explicitly across the four 
faces of a tetrahedron; 
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Inviscid Fluxes 

Inviscid flux quantities )U(F
rr

 (Equations 24 & 25) are 
computed using Roe’s [18, 19] flux-difference 
splitting scheme across each cell face of cell 
centered control volumes. 

For a first order scheme, the state of the primitive 
variables at each cell face is set to cell-centered 
averages on either side of the face. For the higher 
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order scheme, the reconstruction scheme suggested 
by Frink et al. is employed, [5], which is based on an 
analytical formulation for computing the gradient 
term of a Taylor series expansion within tetrahedral 
cells: 

( ) ⎥⎦
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⎢⎣
⎡ −+++

=

4 node3 node2 node1 node

center)3,2,1(face
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3
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      (26) 

where [ ]TpwvuU~ ρ=  represents the 
primitive flow variables for a triangular cell face 
which is composed of nodes 1, 2 and 3. 

Frink [5] states that use of such a reconstruction 
scheme gives acceptable results around flow 
discontinuities without requiring the introduction of 
higher order spatial discretizations with limiters.  

 

Roe Fluxes for Moving Grids 

In Arbitrary Lagrangian Eulerian (ALE) formulation 
the computational grid is allowed to move with a 
velocity different from the fluid velocity. Figure 1 
shows the flow of fluid across the cell boundary 
between ith and i+1th control volumes. The Eulerian 
flux vector )U(Feul  passing through the cell boundary 
for one-dimension is given by Roe [18, 19] as: 
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Figure 1. Motion of Fluid across the Cell Boundary 

 

 
Figure 2. Motion of the Cell Boundary with respect to 

Stationary Fluid 

 

In Figure 2, the movement of the boundary with the 

speed 
.
x  to the right is presented where the fluid is 

thought to be stationary. The Lagrangian flux vector 
)U(F rlg  passing through the cell boundary but in the 

opposite direction is: 

)U(F)U(F)U(F rlgrlg,Lrlg Δ+=   (30) 

where; 
.

LL

LL

L

rlg,L x

E

uF ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=

ρ

ρ

ρ

;   (31) 

.

rlg x

)E(

)u()U(F ⋅
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Δ

Δ

Δ

=Δ

ρ

ρ

ρ

;    (32) 

and; 

LR ρρρ −=Δ      (33) 

LR )u()u()u( ρρρ −=Δ     (34) 

)E()E()E( LR ρρρ −=Δ     (35) 

After proper simplifications, the net flux passing 
through the cell boundary becomes: 

)U(F)U(F)U(F rlgeulrelale −=   (36) 

∑ −
Λ+=

j

)j(
alejale,Lrelale R)U(F)U(F α  (37) 

where 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−+

−

−−

=Λ
−

.

.

.

ale

xcu

xu

xcu

;   (38) 

and 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+−+

+−

−

=

px)xu)(pE(

p)xu(u

)xu(

F
..

LLL

.

LLL

.

LL

ale,L

ρ

ρ

ρ

  (39) 



AIAC-2005-078                                                                                      L. O.GÖNÇ, M.A.AK, M.H.AKSEL and İ.H.TUNCER 

6 
 

Ankara International Aerospace Conference 

The above numerical discretization of Roe [18, 19] 
for moving boundaries is valid for three dimensional 
governing equations. From a physical point of view, 
the grid motion only affects the convective fluxes. As 
shown above, to calculate the new convective terms 
and eigenvalues, the velocity .v.cV

r
 of the face of a 

control volume is required. Trepanier et al. [12] state 
that for deforming meshes, the total volumetric 
increment is composed of elementary increments 
along each of its faces. Accordingly, the relevant 
facial velocity associated with this facial volume 
increment ΔΩ , during a time step tΔ  is defined by 

tS
V .v.c Δ

ΔΩ
=

r
    (40) 

Trepanier et al. ended up with a finite volume simple 
explicit approach noting that the grid is deforming. 

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

Ω

Δ
+

Ω

Ω
= ∑+

+

k
krelk,alen

n

1n

n
1n S)U(FtUU  (41) 

This is also the same as the present case although 
the grid is not deforming. When volume does not 
change, above equation reduces to: 

∑Δ=Ω−
+

k
krelk,ale

n1n S)U(Ft)UU(   (42) 

In this study, the computational domain is rotated at 
each time step without deforming the computational 
cells. In other words, the grid remains undistorted 
and follows the motion of the body. For non-
deforming control volumes, the facial volumetric 
increments sum up to zero. So, the use of the flux 
vectors and eigenvalues derived at the beginning of 
this chapter guarantees the satisfaction of geometric 
conservation law. Barakos et al. [7] also states that 
there is no need to apply any geometric conservation 
law in this formulation. 

 

Viscous Fluxes 

The viscous fluxes )U(Q
rr

, (Equations. 24 & 25), are 
approximated at the cell face centers by first 
computing the velocity gradients at cell centroids, 
then averaging the values with neighbor cell 
centroids at the shared cell face. The velocity 
gradients at the cell centroids are calculated using 
the divergence theorem. This theorem can be 
considered as defining the average of the gradient of 
a scalar U as a function of its values at the 
boundaries of the finite volume under consideration. 

∫∫ ⋅=Ω⋅∇
Ω S

SdU   dU
rrrr

   (43) 

SdnU1      d
x
U1       

x
U

S

x

rrr
r

⋅⋅
Ω

=Ω⋅
∂
∂

Ω
≡⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ ∫∫

ΩΩ

 

      (44) 

 

Turbulence Model 

Non-dimensionalized integral form of this transport 
Equation (17) has been solved separately from the 
conservation flow equations. For the spatial 
discretization of the conservative part of the 
equation, Equation (21), HLLC approximate 
Riemann solver has been used by implementing the 
turbulent working variable ν~  as a passive scalar in 
the formulation, [6]. Face averaged values of the 
conservative flow variables are calculated using the 
same formulation used for Roe’s upwind scheme. 
Face averaged value for the passive scalar turbulent 
working variable ν~  at left and right states are 
calculated by : 

R/L
faceR/L

R/LR/L
R/LR/L,face,turb

~ 
SS
uS

U νρ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
−

=  (45) 

The HLLC flux term at the face of the cell interface is 
defined as: 

( )
( )

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥

≤≤−+

≤≤−+

≤

=

RR,turb

RfaceRRface,turb,RR,turb

faceLLLface,turb,LL,turb

LL,turb

face,conv,turb

S0      if                     F

S0S      if  ~USF

S0 S     if  ~USF

S0      if                    F

F
ν

ν

      (46) 

where S is the wave speed. 

The diffusive part of the equation has been modelled 
by the same methodology used for the computation 
of viscous fluxes. A third order Runge-Kutta explicit 
scheme has been adapted for the temporal 
discretization.  

 

Temporal Discretization 

Equation (25) can be written as: 

0RU
t ii =+
∂
∂

Ω      (47) 

for  cells of # ,,2 ,1i L= , where 

( )∑
=

Δ⋅−+−+−=
4

1j
izzyyxxi Sn )QH(n )QG(n )QF(R

      (48) 

iR  is the residual which is the summation of the 
fluxes through the four faces of the tetrahedral 
computational cell. These set of equations are 
integrated in time using a fully explicit third order 
Runge-Kutta scheme developed by Jameson [20]. 
This scheme is used for both steady state and 
unsteady calculations. For unsteady calculations, 
time step is chosen to be global constant value 
which is the minimum of all computational cells. On 
the other hand for steady state calculations, spatially 
variable time stepping is used for fast steady state 
convergence. 
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Grid Rotation 

In a steady coning motion of a missile, the 
longitudinal axis of the missile performs a rotation at 
a constant angular velocity about a line parallel to 
the free stream velocity vector and coincident with 
the projectile center of gravity, while oriented at a 
constant angle with respect to the free stream 
velocity vector [8]. In particular the projectile may 
rotate about its longitudinal axis also, Figure 3. So in 
order to simulate the motion of a missile realistically 
both rotations must be taken into account. Coning 
and spinning rates are given by aeroballistics 
analysis. With respect to the fixed coordinate 
system, the vertical and horizontal components of 
angle of attack α  and β , vary in a periodic fashion 
as the projectile rotates about the free stream 
velocity vector, Figure 3. However, the total angle of 

attack, 22
t βαα +≈  is constant [8]. The rotational 

velocity of the projectile around its axis is denoted by 
ω , where the rotational velocity of the projectile 
around the trajectory of the flight is denoted by Ω , 
Figure 3.  

 

 
Figure 3. Schematic Figure of Rotational Motion of a 

Missile 

 

The rotation of the computational grid around the 
missile about the axis of projectile and about the free 
stream velocity vector can be performed by 
multiplication of simple transformation matrices [16]: 

[ ] [ ]
[ ] [ ]{ } [ ] [ ] [ ]{ } [ ]   R  RR  R RR                 

RRXX

xyzx
1

z
1

y

yz
n1n

φαβθβα

αβ

⋅⋅⋅⋅⋅

⋅⋅⋅⎥⎦
⎤

⎢⎣
⎡=⎥⎦

⎤
⎢⎣
⎡

−−

+

      (49) 

where nX  is the grid coordinates at time step n 
which is rotated to a new position given by 

1nX + , and   

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−=

100

0cossin

0sincos

R z ββ

ββ

β   (50) 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −

=

αα

αα

α

cos0sin

010

sin0cos

R y   (51) 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=

θθ

θθθ

cossin0

sincos0

001

R x  where tΔ⋅= ωθ

      (52) 

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−

=

φφ

φφφ

cossin0

sincos0

001

R x  where tΔ⋅Ω=φ

      (53) 

 

Boundary Conditions 

The boundary conditions are implemented by using 
ghost cells at the boundaries. For flows around 
moving bodies, the entire computational grid is 
rotated instead of deforming the mesh. As the far 
field boundary condition for external flows, 
characteristic Riemann invariants corresponding to 
the incoming and outgoing waves traveling in 
characteristic directions, which are defined as normal 
to the boundary, are used [15, 11]. The density is 
computed from the entropy relation, and the 
pressure from the perfect gas law using the square 
of the speed of sound. Batina [14] states that this 
approach correctly accounts for wave propagation at 
farfield which is important for convergence rate and 
serves as a non-reflecting boundary condition for 
unsteady applications. 

The viscous wall boundary condition imposes a no-
slip condition of the flow, a zero pressure gradient, 
and the appropriate heat transfer condition (adiabatic 
or constant temperature) at the zone boundary (wall 
surface). The no-slip condition can involve a non-
zero velocity if the wall is moving. Hirsch [17] and 
Toro [6] proposes the following approach for 
evaluating normal velocity component at solid wall 
boundary moving with a speed V.Cu : 

( )V.Cicell ghost u2uu ⋅−−=  

icell ghost ρρ =  

icell ghost pp =     (54) 

Symmetry boundary condition is the same as the 
condition defined for non-penetrating inviscid wall 
boundary.  

For Spalart-Allmaras turbulence model, on the no-
slip surfaces, the working variable ν~  is set to zero. 
For tangent-flow surfaces, in other words for the 
symmetry boundary condition, zero gradient of the 
working variable is applied. For far field boundary, it 
is checked whether it is inflow or outflow first and 
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then working variable is set to 0.1~ =ν  for the inflow 
boundaries which corresponds to a free stream 
turbulent kinematic viscosity of 02786.0t =ν . For 
outflow boundaries the value of ν~  is extrapolated 
from the interior mesh. Initial value of ν~ has been 
taken as the same with the free stream value. 

 

Parallel Processing 

Parallel processing is based on domain 
decomposition. The domain decomposition is 
performed by “METIS” [9] which is an open source 
software. Communication between parallel 
processes is achieved by “PVM – Parallel Virtual 
Machine” message passing software libraries. The 
parallel computing environment consists of a LINUX 
based PC cluster. 

The parallel solver is composed of two separate 
executables; “Master” and “Worker”. The “Master” 
process performs followings in sequence: 

1. The input data and computational grid are read.  

2. Neighbor connectivity is evaluated. 

3. Computational grid is partitioned by METIS. 

4.  “Worker” processes are spawned for each 
partition and partition data are sent. 

5. Residuals and flow variables from each partition 
are received at prescribed time steps and I/O is 
done. 

6. Program is stopped when prescribed 
convergence criteria is satisfied or prescribed 
number of time steps is reached.  

Whereas, “Worker” processes perform the followings 
in sequence: 

1. The input data are received from the “Master” 
process. 

2. The geometric properties of cells, including the 
grid movement and grid velocities are 
computed. 

3. The interface boundary conditions to/from the 
adjacent partitions are exchanged.  

4. The flow solution is implemented for the 
partition. 

5. The residuals and aerodynamic load 
coefficients are sent to the “Master” process 
periodically. 

 

CONCLUSION 

In this paper, first in a series of two, the parallel 
Navier-Stokes solver with Spalart-Allmaras 
turbulence model on unstructured rotating grids is 
presented in detail. Code verification and validation 
studies will be presented in the second part of the 
series. 
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